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ABSTRACT 

Usage Monitoring requires accurate regime recognition. For each regime, 

there is a usage assigned for each component. For example, the damage 

accumulated at a component is higher if the aircraft is undergoing a high G 

maneuver than in level flight.  

The objective of this research is to establish regime recognition models 

using classification algorithms. The data used in the analysis are the parametric 

data collected by the onboard system and the actual data, consisting of the 

correct regime collected from the flight cards. 

This study uses Rpart (with a tree output) and C5.0 (with a ruleset output) 

to establish two different models. Before model fitting, the data was divided into 

smaller datasets that represent regime families by subsetting using important 

flight parameters. Nonnormal tolerance intervals are constructed on the 

uninteresting values; then these values in the interval are set to zero to be muted 

(e.g. excluded). These processes help reduce the effect of noise on 

classification. 

The final models had correct classification rates over 95%. The number of 

bad misclassifications were minimized (e.g. the number of bad misclassification 

of a level flight regime as a hover regime was minimized), but, the models were 

not as powerful in classifying the low-speed regimes as in classifying high-speed 

regimes. 
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EXECUTIVE SUMMARY 

The Health and Usage Management System (or usage monitoring) 

determines the actual usage of a component on aircraft. This allows the actual 

usage from a flight instead of the more conservative worst-case usage to be 

assigned to that component. By measuring the actual usage on the aircraft, the 

usage times of components can be extended to their true lifetimes. Usage 

Monitoring requires an accurate representation of regime (i.e. Regime 

Recognition). For each regime, there is a usage (a “damage factor”) assigned for 

each component that has usage For example, the damage accumulated by a 

component might be higher if the aircraft is undergoing a high-G maneuver than 

it is during a straight and level flight.  These damage factors are assigned by the 

Original Equipment Manufacturer based on measured stresses in the aircraft 

when undergoing a given maneuver. Inaccurate regime recognition may lead to a 

false impression of usage of some aircraft components. This may result in higher 

cost in maintenance and, more seriously than that, threats to flight safety. 

This research establishes two regime recognition models using 

classification algorithms. The C5.0 classification algorithm was used to produce 

rulesets and the Rpart package was used to produce tree-based outputs. 

The data used in the analysis are the parametric data collected by the 

onboard system and the actual data, consisting of the correct regime collected 

from the flight cards. The data for this research was provided by the Goodrich 

Corporation Fuel & Utility Systems. The data was collected from an experimental 

flight of an UH-60A “Bearcat5.” The data used in the analysis consists of three 

parametric data files collected by the onboard system and two flight cards that 

have the true value of regime and information about the time during which each 

regime was flown. 

Before the model fitting, the data was divided into smaller datasets using 

important flight parameters. After this preliminary division, nonnormal tolerance 
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intervals are constructed on the other parameter values to capture the useless 

information in the data that does not explain anything about regimes. Those 

nonnormal intervals are constructed in two steps: assuming normality and then 

revising intervals by visual inspection to compensate for skewness in the data. 

Values in the intervals are set to zero to be muted (e.g. excluded from modeling 

process.) Some parameter values are also rounded and transformed without 

losing useful information. After this data editing process, classification models are 

fitted to each dataset. Since the variability of the parameters values is low in 

smaller data subsets, these sub-models are more powerful than any single 

classification model built on the full data. 

The final models had correct classification rates over 95%. The number of 

bad misclassifications were minimized (e.g. the number of bad misclassification 

of level flight regimes as hover regimes was minimized), but the models were not 

as powerful in classifying the low-speed regimes as in classifying high-speed 

regimes. 
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I. INTRODUCTION  

A. BACKGROUND  
In early 1990s, the U.S. military started an aircraft health and usage 

monitoring integration program aimed at demonstrating and validating emerging 

technologies. This program is called the Health and Usage Management System 

(HUMS.) The U.S. military did not have state-of-the-art diagnostic capability 

installed on rotary-wing aircraft at that time. Based upon the mission need, such 

a system was expected to enhance operational safety and significantly reduce 

life cycle cost through its ability to predict impending failure of both structural and 

dynamic drive system components. This consequently would direct on-condition 

maintenance actions and/or alert the pilot to conditions affecting flight safety. 

(Goodrich Corporation, 2001) 

The Naval Air Warfare Center Aircraft Division was the pioneer in 

evaluating diagnostic technologies. The SH-60 was selected as the test vehicle 

because it offered the best availability of test assets and the highest potential for 

support because of the large number of aircraft among the Navy, Army and 

Coast Guard. The program, designated Helicopter Integrated Diagnostic System 

(HIDS) uses state-of-the-art data acquisition, raw data storage, and algorithmic 

analysis provided under contract by Goodrich to evaluate the propulsion and 

power drive system. Cockpit instruments and control positions are recorded 

during the entire flight for usage monitoring and flight analysis. Since the 

introduction of structural usage monitoring capability to the HIDS program in 

1995, it has led to other joint Goodrich/US Military programs. This capability is 

expected to provide a significant reduction in maintenance cost while maintaining 

the current level of safety (Goodrich Corporation, 2001.) 

1. System Description 
The integrated mechanical diagnostic System (IMDS) includes all of the 

necessary hardware and software for acquiring data in flight to provide on-aircraft 

warnings and maintenance advisories. The system also includes a separate 
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ground station that performs post-flight analysis, data processing, maintenance 

diagnostics, reporting, and data archiving. The ground station hardware and 

software are designed to be operable in the current U.S. Navy/USCG/U.S. 

Marine Corps maintenance environment and provide maintenance data output 

products that can be readily integrated with the Navy's maintenance concept and 

daily operation.  

A regime is a category of operation that an aircraft can be in at a given 

time.  A regime can also be known as a flight condition or maneuver. The usage 

monitoring subsystem determines the percentage of flight time the helicopter has 

spent in each flight regime as well as the regime sequence (i.e., flight profile). 

The regime data is then used to calculate the rate at which various structural 

components are being used up, and when they need to be removed from service 

so as to maintain the required reliability (Goodrich Corporation, 2002a.) 

a. On-Board System 
The airborne portion of the system includes interfaces to sensors, 

signal conditioning and data acquisition capability for all sensors, and the 

algorithms required to complete all of the in-flight functions and the data transfer 

the ground station. 

b. Central Ground-Based System  
The parameter data is downloaded to the Central Ground-Based 

Station (CGBS) after each flight. Regimes are then recognized using the 

downloaded data, and a usage spectrum is generated based upon the regime 

sequence. The major functionality of the ground-based station is to communicate 

usage reports to the server. One of these reports is the “structural life limited 

parts usage report.” This usage report reports the usage accumulated during a 

single flight (Goodrich Corporation, 2001.) Figure 1 shows photographs of the 

MPU (Main Processing Unit) and CDU (Central Processing Unit), and Figure 2 

shows a screen shot of a flight summary in the ground station. 
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Figure 1.   HUMS On-Board System Installed on a Helicopter (From Goodrich, 

2001) 

 
Figure 2.   An Example of the Ground Station Screen of a Flight Summary and 

Flight Spectrum Report for a Single Flight (From Goodrich, 2001) 
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B. OBJECTIVE 
Usage Monitoring requires accurate representation of regime (i.e. Regime 

Recognition). For each regime, there is a usage assigned for each component. 

For example, the damage accumulated at a component is higher if the aircraft is 

undergoing a high-G maneuver than it is during a straight and level flight.  These 

damage factors are assigned by the Original Equipment Manufacturer based on 

measured stresses in the aircraft when undergoing a given maneuver 

(Bechhoefer, n.d.) 

The objective of this thesis research is to establish a regime recognition 

model using classification algorithms. The data used in the analysis is the 

parametric data collected by the onboard system and the actual data from flight 

cards which has the exact information on the flight. The data was provided by the 

Goodrich Corporation Fuel & Utility Systems. The data was collected from an 

experimental flight of an UH-60A “Bearcat5.” The data consists of three 

parametric data files collected by the onboard system and two flight cards that 

have the true value of regime and information about the time during which each 

regime was flown. The model based on this data should minimize the number of 

bad classifications (e.g. no classification of a level-flight regime as a hover 

regime) 

 

C. SCOPE 
The Health and Usage Management System determines the actual usage 

of a component on the aircraft. This allows the actual usage from a flight instead 

of the more conservative worst-case usage to be assigned to that component. By 

measuring the actual usage on the aircraft, the life of components can be 

extended to their true lifetime (Bechhoefer, n.d.) This is directly related to the 

accurate representation of regime recognition. Inaccurate regime recognition 

may lead to a false impression of usage of some aircraft components. This may 

result in higher cost in maintenance and, more seriously than that, threats to 

flight safety. 
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D. ORGANIZATION OF THESIS 
This thesis is comprised of five chapters. Chapter II focuses on the 

previous studies on this research topic. Chapter III gives short descriptions of the 

parameters of the data and the process of preparing the data for model fitting. 

Chapter IV gives an overview of the possible models and algorithms and also 

explains how and why the best model is chosen. Chapter V summarizes the 

result of the models and presents recommendations for future studies. 
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II. PREVIOUS STUDIES  

A. PREVIOUS STUDIES ON THE SAME DATASET BY THE GOODRICH 
CORPORATION  
1. The Maximum Likelihood Estimator Methodology 
This previous work was by Eric Bechhoefer, Goodrich Corporation Fuel & 

Utility Systems, using a maximum likelihood estimator (MLE) methodology. MLEs 

assume that input parameters are noisy, and weight the validity of a parameter 

by its system variance. The output of the algorithm is the regime which is most 

likely, as a function of the a priori parameter variance. That is, the technique 

measures the difference between the observed parameters and those from a 

notional set of regimes.  The regime which is closest, statistically, to the 

measured parameters, is most likely. In fact, the MLE is a multi-dimensional 

hypothesis test, in which the parameters are used to test the hypothesis that the 

current set of parameters is a member of a given regime (Bechhoefer, n.d.) 

2. The Logical Tests 
Before the MLE Methodology, the Goodrich Corporation was using a 

logical test-based regime recognition model. The specific parameter cases are 

tested and if the test result is true for a regime, that regime was considered true. 

This method would have been a good methodology, if the measured parameters 

were free of noise. However, many of the parameters used for regime recognition 

models are noisy. This may lead to a large number of misclassifications. This 

thesis research establishes a regime recognition model based on classification 

algorithms and presents different ways to reduce the effect of noise in the data 

by subsetting, transforming and filtering. 

3. The Approach in the Current Research 
The approach of this thesis research is to use classification algorithms to 

establish a classification model with rulesets or classification trees that ensures a 

minimal number of bad classifications. The first step is to fit different models to 

the training set using different classification algorithms. The algorithm that gives 

the best results is chosen for further modeling. This further modeling seeks 
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different ways to improve the classification rate and also focuses on fixing 

modeling problems. To achieve this goal, before fitting the best model, the 

dataset was partitioned based on values of three parameters. Partitioning was 

performed first using weight on wheels, and then calibrated airspeed and then 

control reversals. There was an additional splitting for only C5.0 models using the 

take-off / landing parameter. This process yields smaller datasets that represent 

families of regimes. For example, the dataset where weight on wheels is “0” and 

calibrated airspeed is less than a selected threshold value will be called the “in 

the air and slow” family. This family is comprised of the observations when the 

aircraft is in the air and at low speed. A sub-model was fit to the dataset of each 

family. Due to the low variability of the parameter values in these small subsets 

(families), the sub-models are more powerful than any single classification model 

fit to the whole dataset. The sub-models are established using parameters which 

are considered to have important information about that regime family. One 

reason for the small number of bad misclassifications is that important 

parameters are used for the preliminary partitioning process. Besides this 

preliminary classification process, a filtering methodology (i.e. muting the 

uninteresting values of some parameters) is applied to prevent potential 

problems caused by noise in the parameter values. This process consists of 

building non-normal tolerance intervals on some selected parameters and 

rounding the parameter values without losing interesting information. The non-

normal intervals were built starting with the normality assumption and then 

revised by visual inspection. Data in these revised intervals was set to zero to 

mute those values so that the algorithm never thinks that they are interesting 

enough to split on. Only extreme values that carry important information about 

the regime are of interest. This process also prevents splits on small and 

uninteresting values of the input parameters. 
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B. OTHER RELATED STUDIES 
1. Regime recognition for MH-47E Structural Usage Monitoring 
This logical test-based study was done by Boeing Defense & Space 

Group, Helicopters Division (1997.) 

They obtain high quality flight data measurements through the use of data 

editing and data filtering techniques, to define the maneuver state of the aircraft 

in terms of a comprehensive set of fundamental maneuvers, and to determine 

the MH-47E basic fatigue profile flight regime which best describes the maneuver 

state of the aircraft (Teal et al., 1997.) 

Data conditioning, filtering, and failure management techniques were 

primarily used. Wind direction and magnitude estimation and inertial/air data 

blending were applied to obtain high-fidelity airspeed estimation at low speeds. 

Maneuver identification algorithms and criteria were presented and validated 

using flight test data. As a result, the methodology they used for mapping the 

aircraft maneuver state into the MH47E Basic Fatigue Profile flight regimes 

ensured a conservative, yet realistic, assessment of critical component life 

expenditure. 
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III. DATA  

A. DATA USED IN THE ANALYSIS  
1. The Definitions of the Parameters from the Parametric Data 

Files 
This portion of the data used in the regime recognition analysis is from 

various aircraft state parameters collected by the on-board system for usage 

monitoring. The parameter definitions are taken from (Goodrich Corporation, 

2002b), (UH-60A Operator’s Manual, 1996) and (Wikipedia, 2006). Some of the 

plots illustrate unexpected behaviors in the data; others are just for visualization 

of the parameters. For a better visualization of the role of the parameters in 

different flight regimes, only one plot is shown for each parameter. Each plot 

uses the parameter values from a regime in which that parameter is important in 

determining that regime. 

a. Airspeed.Vh.Fraction  
This continuous parameter is the ratio of the actual speed to the 

speed achieved in level flight with maximum continuous power. In Figure 3, the x-

axis shows the time frame in seconds during which a level-flight regime is flown 

and the y-axis shows the corresponding values of this parameter. For this level-

flight regime, Airspeed.Vh.Fraction is a very important parameter and its values 

should be observed in the planned interval of 0.3 and 0.4. The planned values 

are in fact observed in that interval of time for this level-flight regime. 

b. Altitude.Rate 
This continuous parameter is the vertical velocity of the aircraft in 

feet per minute. In Figure 4, the x-axis shows the time frame in seconds during 

which a right climbing turn regime is flown and the y-axis shows the 

corresponding values of the parameter Altitude.Rate. For this flight regime, 

Altitude.Rate is a very important parameter and it should achieve positive and 

gradually increasing values since the aircraft is gaining altitude. The expected 

values are in fact observed in that interval of time for this climbing regime. 
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Figure 3.   Airspeed.Vh.Fraction in a Level-flight 
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Figure 4.   Altitude.Rate in Right Climbing Turn Regime. 
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c. Angle.of.Bank 
This continuous parameter is the angle (in degrees) between the 

aircraft's normal axis (longitudinal axis) and the vertical plane. Angle.of.Bank is 

the absolute value of the parameter Roll.Attitude. In the left plot in Figure 5, the 

x-axis shows the time frame in seconds during which a right turn regime is flown 

and the y-axis shows the corresponding values of the parameter Angle.of.Bank. 

In the right plot in Figure 5, the x-axis shows the time frame in seconds during 

which a level flight regime is flown and the y-axis shows the corresponding 

values of the parameter Angle.of.Bank. The flat line is the expected angle of 

bank from the flight card; the other line is the observed angle of bank from the 

parametric data files.  The plot on the right in Figure 5 shows that in response to 

helicopter movement, there will be a small angle of bank observed, even if the 

expected angle of bank is zero. 
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Figure 5.   The Angle.of.Bank in Turn Right with 60° Max AOB.\and in Level-flight 

with 0° AOB 
 

 

d. KCAS 
This continuous parameter illustrates indicated airspeed, corrected 

for instrument error and position error (see also parameter KIAS). In the following 

plot, the x-axis shows the time frame in seconds during which a level-flight 

regime is flown and the y-axis shows the corresponding values of the parameter 
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KCAS. For this level-flight regime the parameters values should be observed in 

the approximate interval of 70 to 90. The planned values are in fact observed in 

that interval of time for this level-flight regime. 
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Figure 6.   KCAS in Level Flight up between 0.4 and 0.5 Vh Regime. 

 
e. CONTROL.REVERSAL.ID 
This categorical parameter is a control input made by the pilot to 

maintain the current position of the aircraft, normally during a wind gust.  It can 

also be a pilot control input made for evasive maneuvers. The reversal consists 

of control input in one direction and a reversal to return the control to its starting 

position. This will be in the form of a number in the set of {0, 1, 2, 4, 8}, as 

defined in the chart below. This will last as long as the control reversal is present. 

Number

Longitudinal 
Cyclic Reversal 

Present
Lateral Cyclic 

Reversal Present
Pedal Reversal 

Present
Collective 

Reversal Present
0 No No No No
1 No No No Yes
2 No No Yes No
4 No Yes No No
8 Yes No No No  

Table 1.   Control Reversal IDs (Goodrich, 2002a) 
 



 15

Some regimes are directly related to this parameter. The parameter 

should be observed with its expected ID level. The charts below show the 

regimes, expected IDs and observed IDs. The parameter is plotted as if it were 

continuous.
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Figure 7.   Control Reversal IDs. 

 
The expected IDs are observed in eight cases; in one case, the 

wrong level of ID is observed and in seven cases no IDs are observed. Since the 

reversals should require a maximum of two seconds, the on-board system might 

not be capturing the command inputs by the pilot. Since the preliminary 

classification process, which subsets data into smaller regime families, uses this 

parameter, those unobserved ID levels cause misclassification by directing 

observations into undesired regime families. 

f. Landing Flag 
This categorical parameter represents aircraft landing, i.e., if the 

wheels are in contact with the ground after not being in contact with the ground is 

1; otherwise it is 0. This is a very important parameter. If it is 1, it should be 

possible to assume that the regime is a landing one, without ever inspecting the 
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other parameters. Landing.Flag gets the value of 1 when Weight.On.Wheels 

transitions from 0 to 1, and Weight.On.Wheels remains 1 for one second. 

Landing.Flag is set back to 0 by the system after five seconds of being 1. 
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Figure 8.   Weight.On.Wheels, Takeoff.Flag and Landing Flag 
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In the plot above, the transition of Weight.On.Wheels from 0 to 1 

sets Landing.Flag to 1 and after approximately five seconds, the system sets it 

back to 0. 

g. Takeoff. Flag 
This categorical parameter represents aircraft take-off, i.e., if the 

wheels are not in contact with the ground it is 1; otherwise it is 0. This is a very 

important parameter. If it is 1, it should be possible to assume that the regime is 

in takeoff without ever inspecting the other parameters. In the following plot, the 

x-axis shows the time frame in seconds that a take-off regime is flown and the y-

axis shows the corresponding values of the parameter Takeoff.Flag. 

Takeoff.Flag gets the value of 1 when Weight.On.Wheels 

transitions from 1 to 0, and Weight.On.Wheels remains 0 for one second. 

Takeoff.Flag is set back to 0 by the system, after five seconds of being 1. In the 

plot below, the transition of Weight.On.Wheels from 1 to 0 sets Takeoff.Flag to 1 

and after approximately five seconds, the system sets it back to 0. 

 
Figure 9.   Takeoff.Flag in a Take-off Regime.  

 
Since a period where the parameter is “1” means a take-off regime, 

the rest of the times where Takeoff.Flag is “0” (in that particular picture) may not 

be predicted as being in a take-off regime. Those observations will become 

misclassifications since the corresponding responses for these observations (in 

that time period) are all take-off regimes.  
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g. Weight.on.Wheels 
This categorical parameter is 1 if the aircraft is on ground; if the 

aircraft is in flight then its value is “0”. This parameter adds delay and keeps 

regime recognition in synchronization. By the system, the landing and takeoff 

parameters are delayed for approximately two seconds after this parameter, in 

order to prevent falsely detected landings and takeoffs.  

h. Lateral.Accel 
This continuous parameter is the lateral acceleration of the aircraft 

in G's. Acceleration in the port direction is positive. In the following plot, the x-axis 

shows the time frame in seconds during which a left turn regime is flown and the 

y-axis shows the corresponding values of the parameter Lateral.Accel. In a left 

turn regime, the parameter values should achieve positive values since the left is 

the port side. The expected behavior is observed.  
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Figure 10.   Lateral.Accel in a 60-degree Left Turn Regime. 



 21

 
i. Nr 
This continuous parameter is the main rotor RPM or rotor rate of 

rotation in percent. In the following plot, the x-axis shows the time frame in 

seconds during which a take-off regime is flown and the y-axis shows the 

corresponding values of the parameter Nr. The increasing part of the curve 

represents the actual time when the aircraft becomes airborne. 
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Figure 11.   Nr in a Take-off Regime. 

 
j. Pitch.Attitude 
This continuous parameter is pitch angle in degrees. If the aircraft’s 

nose is up, the parameter value is positive. In an unloaded helicopter, the nose 

tends to move up, which causes this parameter to be positive in level and slow 

flights. In Figure 12, the x-axis shows the time frame in seconds during which a 

rearward flight regime is flown and the y-axis shows the corresponding values of 

the parameter Pitch.Attitude. For this flight regime, this parameter is a very 

important. The parameters values should be positive values to achieve a nose up 

flight pattern.  
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k. Radar.Altitude 
This continuous parameter is the instantaneous indication of actual 

terrain clearance height in feet. In Figure 13, the x-axis shows the time frame in 

seconds during which a hover regime is flown and the y-axis shows the 

corresponding values of the parameter Radar.Altitude. In an in-ground-effect 

hover regime, this parameter values should achieve less than 80 feet, and this 

can be readily observed in the plot. 
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Figure 12.   Pitch.Attitude in a Rearward Flight Regime. 
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Figure 13.   Radar.Altitude in an In-Ground-Effect-Hover Regime. 

 
l. Roll. Attitude 
This continuous parameter is the roll angle in degrees. If the aircraft 

has a right bank, the parameter values are positive. In the following plot, the x-

axis shows the time frame in seconds during which a descending left turn regime 

is flown and the y-axis shows the corresponding values of the parameter Roll. 

Attitude. This descending regime also consists of a banked turn with a 60° angle 

of bank. Since this 60°-bank is a left bank, it should achieve negative values. 

This pattern can be readily observed in Figure 14. 
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Figure 14.   Roll.Attitude a Descending Left Turn 60° Max AOB Regime. 

 
m. TGT.1 and TGT.2 
These continuous parameters are the turbine gas temperature in 

engine 1 and engine 2 respectively. The units are in °C. In the left plot below, the 

x-axis shows the time frame in seconds during which a hover regime is flown and 

the y-axis shows the corresponding values of the parameter TGT.1 and in the 

right one, the x-axis shows TGT.1 and the y-axis shows TGT.2. The approximate 

linear relationship between these two parameters can be readily observed. 

Therefore, TGT.1 and TGT.2 were combined into a parameter called TGT by 

averaging TGT.1 and TGT.2. 
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Figure 15.   TGT.1 values in a Hover Regime (the plot on the right shows the 

relationship between TGT.1 and TGT.2.) 
 
n. Torque.1 and Torque.2 
These continuous parameters are torque acquired from engine 1 

and engine 2 respectively. In the right plot below, the x-axis shows the time 

frame in seconds during which a take-off regime is flown and the y-axis shows 

the corresponding values of the parameter Torque.1.In the left plot below shows 

Torque.1 vs Torque.2. The approximate linear relationship between these two 

parameters can be readily observed. Therefore, Torque.1 and Torque.2 will be 

combined into a parameter called Torque by averaging Torque.1 and Torque.2. 
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Figure 16.   Torque.1 vs. Torque.2 and Torque.1 in a Take-off Regime. 
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o. Vertical.Accel 
This continuous parameter is the vertical acceleration of the aircraft 

in G's. If the aircraft’s acceleration is in the up direction, the parameter is positive. 

In the following plot, the x-axis shows the time frame in seconds during which a 

level right turn regime is flown and the y-axis shows the corresponding values of 

the parameter Vertical.Accel. 
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Figure 17.   Vertical.Accel in a Level Right Turn with a 60-degree-angle of bank. 

 
In the plot above, the values of Vertical.Accel are in the interval of 

1.7 to 1.95 (and close to 2). Since the flight regime is a level flight, it is expected 

to observe 1. The main reason for this undesired behavior is that the level turn 

includes a 60-degree-angle of bank. This negatively affects stability in a level 

flight. While executing this maneuver, a collective input by the pilot is required to 

maintain the stability of the aircraft which causes the aircraft to gain some altitude 

in that a period of time. This results in a G bigger than expected. 

p. Yawrate 
This continuous parameter is the change of yaw in degrees per 

second (°/s). If it is positive, it means increasing; negative indicates decreasing. 

In the following plots, the x-axes show the time frame in seconds during which 
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hover turns are flown and the y-axes show the corresponding values of the 

parameter Yawrate. 
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Figure 18.   Yawrate in Hover Turns. 

 
The plot above left shows the parameter values for a left hover turn 

regime. If the aircraft is making a left turn in hover, the yaw angle should achieve 

negative values. Therefore, it is expected that most of the time the values of the 

parameter Yawrate would be negative, but they are not. The plot on the right 

shows a right hover turn regime. If the aircraft is making a right turn in hover, the 

yaw angle should achieve positive values. Therefore, it is expected that most of 

the time the values of the parameter Yawrate would be positive, but they are not. 

These behaviors may cause misclassification. 

2. The Definitions of the Parameters from the Actual Flight Cards 
This portion of the data used in the regime recognition analysis comes 

from actual flight cards. The actual flight cards have flight information on the 

actual (or expected) levels of some parameters. The aircraft Bearcat 5 was told 

to execute aircraft maneuvers which were planned in the flight cards. These 

cards also have the value of the regime that would be realized if the flight were 

carried out as planned. The times on the flight card were used to map and create 

subsets from the parametric data files for each regime. Consequently, all of the 

available parameters from the flight cards were added to the regime data sets. 
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The parameter definitions are from (Goodrich Corporation, 2002b), (UH-60A 

Operator’s Manual, 1996) and (Wikipedia, 2006.)  

Table 2 shows a sample portion from a flight card. For example, between 

the given time interval from 16:39:37 to 16:40:07, the aircraft was in regime 36. 

The speed read from the display was 80 knots. The pressure altitude was 3000 

feet. .The planned angle of bank was 15 degress. The rate of climb was 1000 

ft/min and there was no control reversal planned for this time interval. 

 hour minute sec KIAS Palt AOB RC CR Regime
16 39 37 80 3000 15 1000 36
16 40 7 80 3000

16 41 25 90 3000 0 -500 40
16 41 55 90 3000

  
Table 2.   A Sample Portion of a Flight Card (From Goodrich 

Documents) 
 

a. KIAS  
This continuous parameter is the speed read directly from the 

airspeed indicator on an aircraft, driven by the pitot-static system. KIAS is directly 

related to knots calibrated airspeed (KCAS), but includes instrument errors and 

position error (See KCAS.) 

b. Palt 
This continuous parameter indicates the pressure altitude 

measured above sea level on a standard atmospheric day. 

c. RC 
This continuous parameter indicates the expected rate of climb, 

which is the speed at which an aircraft increases its altitude expressed in feet per 

minute (ft/min).This parameter is directly related to the altitude rate. 

 

d. AOB 

This continuous parameter is the expected angle of bank (See 

Angle.of.Bank.) 
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e. CR 
This categorical parameter is the expected control reversal ID (See 

Control.Reversal.ID.) 

f. Regime 
This categorical parameter is the number of the regime that the 

aircraft is in. A regime is a category of operation that an aircraft can be in at a 

given time. An aircraft can only perform in a single regime at a time.  A regime 

can also be known as a flight condition (See Table 3.) 

Regime Regime Name Regime Regime Name

2 Power On Aircraft, Rotors Turning, Taxi or Stationary 36 Left Climbing Turn

3 left Taxi Turn 37 Right Climbing Turn

4 Right Taxi Turn 40 Autorotation

5 Take Off 41 Autorotation with Left Sideslip

7 IGE Hover less than 80 feet 42 Autorotation with Right Sideslip

8 0GE Hover greater than 80 feet 43 Rudder Reversal in Autorotation

9 Fwd Flight to 0.3 Vh 44 Longitudinal Reversal in Autorotation

10 Right Sideward Flight 45 Lateral Reversal in Autorotation

11 Left Sideward Flight 46 Collective Reversal in Autorotation

12 Rearward Flight 48 Rudder Reversal in Partial Power Descent

13 Left Hover Turn 49 Longitudinal Reversal in Partial Power Descent

14 Right Hover Turn 50 Lateral Reversal in Partial Power Descent

15 Rudder Reversal in Hover 51 Dive

16 Longitudinal Reversal in Hover 52 Rubber Reversal in Dive

17 Lateral Reversal in Hover 53 Longitudinal Reversal in Dive

19 Level Flight up between 0.3 and 0.4 Vh 54 Lateral Reversal in Dive

20 Level Flight up Between 0.4 and 0.5 Vh 55 Level Left Turn: 30 d AOB

21 Level Flight up Between 0.5 and 0.6 Vh 56 Level Left Turn: 45 d AOB

22 Level Flight up Between 0.6 and 0.7 Vh 57 Level Left Turn: 60 d AOB

23 Level Flight up Between 0.7 and 0.8 Vh 59 Level Right Turn: 30 d AOB

24 Level Flight up Between 0.8 and 0.9 Vh 60 Level Right Turn: 45 d AOB

25 Level Flight up Between 0.9 and 1.0 Vh 61 Level Right Turn: 60 d AOB

26 Rudder Reversal in Level Flight to 1.0 Vh 63 Decending Left Turn: 30 d AOB

27 Lateral Reversal in Level Flight to 1.0 Vh 64 Decending Left Turn: 45 d AOB

28 Longitudinal Reversal in Level Flight to 1.0 Vh 65 Decending Left Turn: 60 d AOB  
Table 3.   Regimes (showing only the ones present in the dataset) 

(From Goodrich, 2002b) 
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3. The Derived Parameters  
In order to lower the dimensionality of the data, some parameters were 

combined into one parameter when appropriate.  

a. TGT  
(See TGT.1 and TGT.2) 

b.  Torque 
(See Torque.1 and Torque.2) 

 

B.  DATA EDITING PROCESS FOR MODEL FITTING 
Initial fitting of classification models using the C5.0 algorithm lead to 

models which split on noisy variables and which were difficult to interpret. To 

avoid this, several of the parameters were muted using the data editing process 

in this section. 

1. Building Tolerance Intervals Assuming Normality  
This section addresses an issue that is very important for the regime 

recognition model. This issue is data editing, or the removal of uninteresting 

values of some parameters by muting or giving them default values, so that the 

model would never think that those values are interesting enough to build 

structures on (i.e. split on them in a classification model.) Different regimes can 

be observed when some parameters happen to have bigger or more extreme 

values than usual. If the usual values are muted by giving them a value of 0, the 

extreme values, which help to define regimes, will be more obvious and therefore 

they will be more likely to be captured by the model. This may help avoid having 

unnecessary splitting on noisy values when the classification models are applied. 

It may also contribute to the interpretability of the models.  

Not all parameters are important to all regimes. Yaw rate is a very 

descriptive parameter for a hover left turn regime, whereas pitch attitude is not a 

very important one for that specific regime. If unusual values were observed for 

the pitch attitude in a left hover regime, then the classification might no longer be 

left hover turn. For example, if the pitch attitude happens to be positive and larger 



 31

than a threshold, then this regime would be classified as a rearward flight regime. 

If an interval of unimportant (usual) values of the unimportant parameters is 

transformed into uninteresting values such as “0,” then the descriptive (important) 

parameters will drive the classification model and result in high correct 

classification rates. In doing so, the interpretability of the model also increases. A 

rough idea that some parameters have usual values which do not explain 

anything about the regime was extracted from Goodrich Documents. This idea 

was then converted into the importance matrices given in this section 

The data is divided into three parts: on the ground, in the air and fast, and 

in the air and slow. This process is critical because of the different stability 

conditions for different aircraft regimes. If the aircraft is on the ground, it is hard 

to expect big changes in the roll attitude and pitch attitude; these values will be in 

a narrow interval. If the aircraft is flying, its stability will be less, which will make 

those acceptable intervals wider. Even in the fast and slow speed states, these 

parameters will behave differently from one another. More speed may mean 

more deviation in parameter values. 

For data editing, only altitude rate, pitch attitude, yaw rate, roll attitude and 

angle of bank were selected. These parameters are very important in most of the 

regimes and they explain a great deal about the basics of a flight regime. 

The purpose is to find an interval for the selected parameters where they 

are not explaining anything about the regime and to set values in those intervals 

to “0.” Table 4 illustrates how to decide where those parameters are not 

important. 

If the parameter is important for regime then  
the value is 1.

Altitude.R
ate

Pitch.Attitude

Yaw
rate

R
oll.Attitude

Angle.of.Bank

2 Power On Aircraft, Rotors Turning, Taxi or 
Stationary 0 0 0 0 0

3 Left Taxi Turn 0 0 1 0 0
4 Right Taxi Turn 0 0 1 0 0
5 Take-Off 0 0 0 0 0  

Table 4.   The Importance Matrix for “On The Ground” Regimes 
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Parameters which have “0” in the matrix are taken from the corresponding 

regime data files and merged into a vector. This vector consists of the values of 

those parameter values which have no role in explaining anything about any 

regime.  

If the parameter is important for regime 
then  the value is 1.

A
ltitude.R

ate

P
itch.A

ttitude

Y
aw

rate

R
oll.A

ttitude

A
ngle.of.B

ank

7 IGE Hover less than 80 feet 0 0 0 0 0
8 0GE Hover greater than 80 feet 0 0 0 0 0
9 Fwd Flight to 0.3 Vh 0 0 0 0 0
10 Right Sideward Flight 0 0 0 1 0
11 Left Sideward Flight 0 0 0 1 0
12 Rearward Flight 0 1 0 0 0
13 Left Hover Turn 0 0 1 0 0
14 Right Hover Turn 0 0 1 0 0
15 Rudder Reversal in Hover 0 0 0 0 0
16 Longitudinal Reversal in Hover 0 0 0 0 0
17 Lateral Reversal in Hover 0 0 0 0 0  
Table 5.   The Importance matrix for “In The Air and Slow (hover)” 

regimes 
 To form an interval of uninteresting values, a first step might be to 

assume Normality for the parameters so that the usual tolerance intervals can be 

constructed (Devore, 2004.) Since some parameters will not be normally 

distributed, the interval will be checked on the scatter plot of the parameter. 

Skewness and nonnormality will affect the interval. The symmetric tolerance 

interval is calculated under the normality assumption and then will be revised by 

this visual inspection. Checking the scatter plots to revise the intervals 

compensates for not incorporating the skewness into the interval calculations. 

 The tolerance interval should be as narrow as possible to capture 

as much uninterestingness as possible without touching the interesting part. For 

this purpose, only about 68% of the values will be captured by the tolerance 

interval. This percentage is close to +/-1 standard error of the data. 
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If the parameter is important for regime then  the value 
is 1.

A
ltitude.R

ate

P
itch.A

ttitude

Y
aw

rate

R
oll.A

ttitude

A
ngle.of.B

ank
19 Level Flight up between 0.3 and 0.4 Vh 0 0 0 0 0
20 Level Flight up Between 0.4 and 0.5 Vh 0 0 0 0 0
21 Level Flight up Between 0.5 and 0.6 Vh 0 0 0 0 0
22 Level Flight up Between 0.6 and 0.7 Vh 0 0 0 0 0
23 Level Flight up Between 0.7 and 0.8 Vh 0 0 0 0 0
24 Level Flight up Between 0.8 and 0.9 Vh 0 0 0 0 0
25 Level Flight up Between 0.9 and 1.0 Vh 0 0 0 0 0
26 Rudder Reversal in Level Flight to 1.0 Vh 0 0 0 0 0
27 Lateral Reversal in Level Flight to 1.0 Vh 0 0 0 0 0
28 Longitudinal Reversal in Level Flight to 1.0 Vh 0 0 0 0 0
36 Left Climbing Turn 1 0 0 1 0
37 Right Climbing Turn 1 0 0 1 0
40 Autorotation 1 1 0 0 0
41 Autorotation with Left Sideslip 1 1 0 0 0
42 Autorotation with Right Sideslip 1 1 0 0 0
43 Rudder Reversal in Autorotation 1 1 0 0 0
44 Longitudinal Reversal in Autorotation 1 1 0 0 0
45 Lateral Reversal in Autorotation 1 1 0 0 0
46 Collective Reversal in Autorotation 1 1 0 0 0
48 Rudder Reversal in Partial Power Descent 1 1 0 0 0
49 Longitudinal Reversal in Partial Power Descent 1 1 0 0 0
50 Lateral Reversal in Partial Power Descent 1 1 0 0 0
51 Dive 1 1 0 0 0
52 Rudder Reversal in Dive 1 1 0 0 0
53 Longitudinal Reversal in Dive 1 1 0 0 0
54 Lateral Reversal in Dive 1 1 0 0 0
55 Level Left Turn: 30 d AOB 0 0 0 1 1
56 Level Left Turn: 45 d AOB 0 0 0 1 1
57 Level Left Turn: 60 d AOB 0 0 0 1 1
59 Level Right Turn: 30 d AOB 0 0 0 1 1
60 Level Right Turn: 45 d AOB 0 0 0 1 1
61 Level Right Turn: 60 d AOB 0 0 0 1 1
63 Descending Left Turn: 30 d AOB 1 0 0 1 1
64 Descending Left Turn: 45 d AOB 1 0 0 1 1
65 Descending Left Turn: 60 d AOB 1 0 0 1 1  
Table 6.   The Importance Matrix For “In The Air and Fast Regimes” 
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AltRate AOB Pitch.Att Roll.Att YawRate
Lower -617.1 -5.1 -4.1 -2.7 -6.5
Upper 477.5 17.3 4.2 2.7 3.4

AltRate AOB Pitch.Att Roll.Att YawRate
Lower -314.4 1.1 1.8 -3.9 -2.8
Upper 320.9 3.6 5.4 -1.4 1.8

TOLERANCE INTERVALS FOR IN THE AIR AND FAST

TOLERANCE INTERVALS FOR IN THE AIR AND SLOW

 
Table 7.   The Calculated Tolerance Intervals 

 If the values are between the intervals given above, they will be set 

to zero.  

2. Revising the Calculated Intervals Due to Nonnormality 
In this section, the calculated intervals were compared to the actual 

scatter plots to revise them due to the parameters’ skewed and nonnormal 

characteristics. 

In the scatter plots, the dotted lines show the lower and the upper values 

for the calculated tolerance intervals. The solid lines show the revised values. 

The dotted lines are moved up or down to find a region that can separate the 

values very distinctively. The objective is to find a region for the solid lines where 

they exclude uninteresting information, while including useful information. 

As expected that this process helps the classification (C5.0 and Rpart) 

algorithms identify useful information. The algorithms produces rule sets that are 

easy to interpret and use. 

The revised interval for AltRate is [-500,500] (See Figure 19.) The 

normality assumption is not bad for this parameter (See Figure 20). The left tail is 

a little heavier than the right one. This is reasonable since even in level flight the 

aircraft would lose altitude most of the time rather than gaining altitude. 

In Figure 19, the dotted lines are the calculated intervals, and the interval 

lines are moved to an area where they can achieve a better distinct cut-off value 

of uninteresting values. The cut-off values form the revised intervals where they 

are used to exclude uninteresting information.  
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Figure 19.   The Revised AltRate interval 
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Figure 20.   The Histogram and QQ Plot for AltRate 
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Figure 21.    The Revised Pitch.Att Interval 
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Figure 22.   The Histogram and QQ Normal Plot for Pitch.Att 

 
 The revised interval for the Pitch.att is [-3,5]. 
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Figure 23.   The Revised Roll.Att Interval  

 The revision for the Roll.Att is [-4, 1]. In the plot above the dotted 

lines are the calculated intervals; the interval lines are moved to a threshold 

value where they can achieve a better distinct cut-off value. 

 
Figure 24.   The Histogram and QQ Normal Plot for Roll.Att 
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Figure 25.   The Revised Yaw Rate Interval 

 

 
Figure 26.   The Histogram and QQ Normal Plot for YawRate 

 
The normality assumption is not very bad for YawRate, but the 

distribution looks multimodal. The revised interval for the YawRate is [-3, 2]. 
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Figure 27.   The Revised AOB Interval 

 
Since the assumption of normality does not hold for the roll attitude, 

it will not hold for the angle of bank. Without checking for normality, the interval 

for angle of bank will be revised. The revised interval for the AOB is [0, 5]. 

 The same procedure is applied to the in the air and slow data set; 

the revised and the calculated interval values are close. (See Figures 29-30.) 

REVISED  INTERVALS FOR IN THE AIR AND FAST 
  AltRate AOB Pitch.Att Roll.Att YawRate 
Lower  -500 0 -3 -4 -3 
Upper 500 5 5 1 2 
      

REVISED INTERVALS FOR IN THE AIR AND SLOW 
  AltRate AOB Pitch.Att Roll.Att YawRate 

Lower  -300 0 2 -4 -2 
Upper 300 5 5 -2 2 

  
Table 8.   The Revised Intervals 
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3.  Rounding the Values of the Selected Parameters 
To reduce the variability of the parameter values, some parameters are 

rounded. When rounding it is very important not to lose useful information. Splits 

on those parameters are inspected before and after the rounding process to 

make sure that this process did not mask the information that could define a 

regime better. This process also helps by giving splitting for continuous 

parameters which are also rounded. For the on-the-ground data set, parameters 

values were not rounded, since the rounding process did not make a difference 

in classification. 

Parameter Decimal Place
Airspeed.Vh.Fraction 1

Roll.Attitude 0
Altitude.Rate 0
Pitch.Attitude 0

Yawrate 0
Vertical.Accel 1
Lateral.Accel 1

Radar.Altitude 0
Nr 1

Rounding Process

 
Table 9.   The Rounded Parameters and Their Decimal Places  

 
4. Making the Number of Observations Equal for Each Regime in 

Training &Test Sets 
The data that will be used for analysis are from the experimental flight for 

regime recognition. More data was collected in some regime than in others. For 

example, the observations for the IGE Hover regime are more numerous than 

any other regime. The regimes that contain a reversal have a very small number 

of observations. In actual flight during normal operations, the distribution of the 

time spent in each of the regimes might differ considerably from the data used 

here.  

Directly partitioning the data into training and test set will cause the 

distribution of number of observations in different regimes in the data to be 

carried to the training and test sets. This may force the algorithms to focus on 

predicting the most frequent regime in the sample. This can be prevented by 
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making the number of observations equal for all regimes, in both the training and 

test sets. Besides, different base rates are not of interest for the study; therefore, 

a uniform distribution of regimes should be used by making the number of 

observations equal for all possible classes. 

The other important issue to consider is that some algorithms may not 

have the ability to incorporate changes in the distributions of the number of 

observations in the different regimes. They may use default priors such as 

“1/#regimes” which will affect the classification. Or they may have alternative 

ways of accounting for different distributions (e.g. using misclassification costs.) 

For these reasons, the numbers of observations for each regime were 

made equal. The regime data sets were split into subsets from the big flight data 

using the regime flight times given in the flight card. Since there are multiple 

flights for some regimes, data sets that belong to the same regime are merged 

into one data set. Some of the regime data sets are big, but some of them are 

not. To make the number of observations equal for all data sets, 500 was chosen 

as the base number of observations. If a data set had more than the base 

number, only 500 observations were sampled from that data set. Here sampling 

does not mean randomly choosing some observations without replacement; it 

means one in every “ #obs in data set /500 ” was taken. This guarantees that any 

possible pattern in the data set will be carried to the new “smaller” dataset. If a 

data set has fewer observations than the base number then a sampling with 

replacement is done until the base number is reached (See Figure 28 and 29). 

At this point, all of the regime dataset files had the same number of 

observations. The next step is to divide each of the regime data sets into training 

and test sets. Two-thirds of each data set was used for training and the rest as a 

test set. Selection for test and training sets is done by using an “evenly 

distributed” approach again, so that all patterns are included in both sets. 

Whether or not this approach is useful in capturing all possible patterns in the 

data can be easily checked by inspecting the levels of the Control.Reversal.ID 

parameter in both the test and training sets. Since Control.Reversal.ID changes 



 42

for a very small amount of time, such as two seconds or so, if the change in the 

parameter is observed both in the test and training set then the partitioning is 

successful. This process helps the algorithm to focus on that potential pattern in 

order to be able to recognize it in the prediction process. 

In Figure 28, it is quite evident that the levels of Control.Reversal.ID go 

both to the training and test set. The approximate proportion of the number of 

observations in different sets can be surmised by looking at the thickness of the 

plots. In the last step, all of the small data sets are merged into large training and 

test sets. 
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Figure 28.   The Presence of Control.Reversal.IDs in Both the Training and Test 

set 
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Figure 29.   Histograms of the Regimes in the Training/Test Sets 
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Figure 30.   The Scatter Plots for Slow Regimes Parameter Values Before and 

After the Data Editing Process 
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Figure 31.   The Scatter Plots for Fast Regimes Parameter Values Before and After 

the Data Editing Process 
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IV. METHODOLOGY and MODEL FITTING  

A. METHODOLOGY  
The goal of this analysis is to build a classification tree model that uses 

input parameters to predict the regime that the aircraft is in. The best model 

should contain the minimum number of bad misclassifications while predicting 

the regime. Along with high correct classification rates, the model outcomes 

should be interpretable, that is “make sense.” The model should produce a set of 

decision rules that can be evaluated by comparing them to the physical rules. 

Different types of tree-based methods are applied to the training set in order to 

have a sample space of tree models from which the reasonable model could be 

selected. After that, all the models in that space are analyzed using the test set to 

inspect their correct classification rates. Some models, even if they have a high 

correct classification rate, did not have a reasonable interpretation or they simply 

could not be validated. For validation, a very simple approach was used, that the 

order of parameters to split on. For example, to classify a right turn regime, the 

algorithm, the ruleset should have binary split on an unimportant parameter, such 

as Nr. The desired order of parameters is using Weight.On.Wheels, KCAS, 

Roll.Attitude and Altitude.Rate. After selecting the algorithm which produces 

superior results, a detailed study was carried out to construct a better tree using 

that algorithm to reach the best model. The following section gives the definitions 

and important features of the classification algorithms which were applied. 

1. Tree-Building Methods and Algorithms  
A classification tree is an empirical rule for predicting the class of an object 

from values of predictor variables (SPSS Whitepaper, 1999). Different tree 

algorithms all carry out basically the same steps; they examine all of the fields of 

the database to find the one that gives the best classification or prediction by 

splitting the data into subgroups. The process is applied recursively, splitting 

subgroups into smaller and smaller units until the tree is finished (as defined by 

certain “stopping criteria”). The target and input fields used in tree building can be 
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numeric ranges (continuous) or categorical, depending on the algorithm used. If 

a range target is used, a regression tree is generated; if a categorical target is 

used, a classification tree is generated (Clementine 10.0 Software Reference 

Notes). One of the main attractions of a classification tree is its simplicity: it 

performs binary splits on single variables in a recursive manner. Classifying a 

sample may require only a few simple tests. Yet despite its simplicity, it is able to 

give performance superior to many traditional methods on complex nonlinear 

data sets of many variables (Webb, 2002). 

A node is a test on a parameter value. A branch represents an outcome of 

that test. A leaf (terminal) node represents a response or class. At each node, 

one parameter is chosen to split training examples into distinct 

responses/classes as much as possible. A new case is classified by following a 

matching path to a leaf node. Tree construction is a top-down process: in the 

beginning, all training examples are at the root. Then by choosing one attribute 

each time, the examples are partitioned recursively. Tree pruning is a bottom-up 

tree process; it removes sub-trees or branches, in a bottom-up manner, in order 

to improve the estimated accuracy on new observations. The splitting attribute is 

chosen from the available with the object being to improve or a “goodness 

score”. A goodness (purity) function is used for this purpose. Typical goodness 

functions include information gain (as in ID3/C4.5/C5.0 algorithms), and the 

information gain ratio Gini index (Lanzi, 2003). 

In the classification and regression tree approach, six general questions 

arise: 

1. How many decision outcomes or splits will there be at a node? 

2. Which property should be tested at a node? 

3. When should a node be declared a leaf? 

4. If the tree becomes too large, how can it be made smaller and simpler? 

5. If a leaf node is impure, how should the category label be assigned? 
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6. How should missing data be handled? (Duda, Hart, &Stork,1997). 

Different combinations of the answers to the six questions above lead to 

different methods and algorithms.  

a. The Classification and Regression Trees 
This method uses recursive partitioning to split the training records 

into segments with similar output field values. The predicted response for all 

observations in a leaf is the level with the largest probability in that leaf. 

(1) Measures of node impurity. The impurity of a node is “0” 

if all of the patterns that reach the node bear the same category label, and is 

large if the categories are equally represented. 

The most popular measure is the entropy impurity 

(occasionally called information impurity). jP(w )  is the fraction of training 

patterns x at node N that are in category j, given that they have survived all the 

previous decisions that led to the node N. Then 

 

 

Another measure is Gini impurity. This a generalization of 

the variance of a distribution associated with two or more categories. 

2
i j j

i¹j j
GiniImpurity(N) = P(w )P(w ) =1- P (w )∑ ∑  

The misclassification impurity measures the minimum 

probability that a training pattern would be misclassified at N. 

jj
MisclassImpurity(N) =1-maxP(w )  

In multiclass binary tree creation, the twoing criterion may be 

useful. The overall criterion goal is to select the split that best separates groups 

of the c categories, i.e., a candidate super-category C1 consisting of all patterns 

j jEntropyImpurity(N)=- P(w )logP(w )∑
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in some subset of the categories, and candidate super-category C2 as all 

remaining patterns. The twoing criterion is not a true impurity measure. 

(2) Stopping criteria for splitting. One traditional approach is 

to use techniques of a particular cross-validation. That is, the tree is trained using 

a subset of the data (for instance 90%), with the remaining (10%) kept as a 

validation (test) set. One continues splitting nodes in successive layers until the 

error on the validation data is minimized. Another method is to set a (small) 

threshold value in the reduction in impurity; splitting is stopped if the best 

candidate split at a node reduces the impurity by less than that pre-set amount. 
This method has two main benefits. First, unlike cross-validation, the tree is 

trained directly using all of the training data. Second, the leaf nodes can lie at 

different levels of the tree, which is desirable whenever the complexity of the data 

varies throughout the range of input (Duda et al., 1997.) 

(3) Priors, loss and weights. If a category i is represented 

with the same frequency in both the training and the test data, it will not affect the 

tree creation. If this is not the case, priors should be used as a method for 

controlling tree creation so as to have lower error on the actual final classification 

task when the frequencies will be different. The most direct method is to weight 

samples to correct for the prior frequencies as well as seek to minimize a general 

cost, rather than a strict misclassification or 0-1 cost. Such information can be 

presented in a cost matrix C. ijc C∈ is the cost of classifying a pattern as class i 

when it is actually class j. Cost information is easily incorporated into a Gini 

impurity, using the following weighted Gini impurity, which should be used during 

training. Costs can be incorporated into other impurity measures as well (Duda et 

al., 1997.) 

(4) Pruning. The goal of pruning is to prevent overfitting to 

noise in the data. There are two strategies for “pruning”: postpruning, which 

WeightedGiniImpurity(N) = c P(w )(w )ij i jij
∑
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amounts to taking a fully-grown decision tree and discarding unreliable parts; and 

prepruning, in which the algorithm stops growing a branch when information 

becomes unreliable. (Lanzi, 2003) The cost-complexity pruning penalizes the 

largest trees. The penalty α  is incorporated into the score function, so that each 

node will add α  to the overall score. If the α  chosen is bigger, the tree will be 

smaller. (Whitaker, 2006) Therefore, the algorithms avoid growing bigger trees so 

as not to be penalized for adding more nodes. Usingα , the complexity (size) of 

the model can be controlled by pruning. A small value of α will produce a very 

large tree. It is possible to prune a large tree to have a valid "right-sized" (small) 

tree which can achieve the same correct classification rate on new data as the 

large tree. The α  using which the tree should be pruned can be found inspecting 

the complexity parameter plot of the tree model. The following plot shows the 

cross-validated estimate of error in the y-axis and the complexity parameter in 

the x-axis.  
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Figure 32.   A Complexity Parameter Plot 

 
 The area where the curve gets flat, that is the error rate 

stops decreasing as quickly as before, gives a good complexity parameter value 

for the tree model. The tree should be pruned using this complexity value. After 
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pruning, the outputs tree models should be checked if they are able to classify as 

well as the pruned (larger) one. A smaller tree is easier to interpret and evaluate. 

A very common approach for pruning is to grow a large tree and prune it using 

Breiman’s One Standard Error Rule (StatSoft, n.d.b) 

(5) Handling missing values. Classification models might 

have missing attributes during training, during testing, or both. There are several 

different ways to handle this problem. How the algorithm handles the missing 

values was one of the criteria for the selection of the algorithm to establish the 

best model. Missing observations are often excluded when the model is training. 

When predicting an observation with missing data once it has fallen as far as it 

can the (non-terminal) node in which it lands gives the prediction. An alternative 

is the method of fractional cases. If 80% of X1’s go left, and X1 is missing, then 

prediction = 0.8 * (left prediction) + 0.2 * (right prediction).The last alternative to 

apply is to use “surrogate splits,” that is back-up splits computed when the tree is 

built (Whitaker, 2006.) The values of the parameter Radar.Altitude which were 

greater than 100 were set to “NA”, because Radar.Altitude cannot be an input 

variable to classify the regime other than in-ground-effect regimes. Therefore, the 

algorithms that were selected to build classification models had the capability to 

use the missing values. Both Rpart and C5.0 algorithm have intelligent ways of 

handling missing values. 
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b. Chi-squared Automatic Interaction Detection (CHAID) 
 This method builds classification trees by using chi-square 

statistics to identify optimal splits; however, there are more areas wherein this 

method differs from classification and regression tree algorithms. The basic 

algorithm that is used to construct (non-binary) trees for classification problems 

(when the dependent variable is categorical in nature) relies on the Chi-square 

statistics to determine the best next split at each step. For regression-type 

problems (continuous dependent variable) the program will actually compute F-

statistics. Specifically, the algorithm proceeds as follows: 

(1) Preparing predictors. The first step is to create 

categorical predictors out of any continuous predictors by dividing the respective 

continuous distributions into a number of categories with an approximately equal 

number of observations. For categorical predictors, the categories (classes) are 

"naturally" defined; that is they are used the way they are held in the data. 

(2) Merging categories. The next step is to cycle through the 

predictors to determine for each predictor the pair of (predictor) categories that 

are least significantly different, with respect to the dependent variable. For 

classification problems (where the dependent variable is categorical as well), the 

algorithm will compute a Pearson Chi-square statistic; for regression problems 

(where the dependent variable is continuous), it will compute an F statistic. If the 

respective test for a given pair of predictor categories is not statistically 

significant, as defined by an alpha-to-merge value, then it will merge the 

respective predictor categories and repeat this step (i.e., find the next pair of 

categories, which now may include previously merged categories). If the 

difference between response values for the pair of predictor categories is 

significant (less than the given alpha-to-merge value), then (optionally) it will 

compute a Bonferroni adjusted p-value for the set of categories for the respective 

predictor. 
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(3) Selecting the split variable. The next step is to choose 

the split predictor variable with the smallest adjusted p-value, i.e., the predictor 

variable that will yield the most significant split. If the smallest (Bonferroni) 

adjusted p-value for any predictor is greater than some alpha-to-split value, then 

no further splits will be performed, and the respective node is a terminal node 

(StatSoft, n.d.a) 

c. Quick, Unbiased, Efficient, Statistical Tree (QUEST) 
Classification trees based on exhaustive search algorithms tend to 

be biased towards selecting variables that afford more splits. As a result, such 

trees should be interpreted with caution. However, QUEST has negligible bias 

(Loh & Shih, 1997) (as cited in SPSS Whitepaper,1999). QUEST is also a tree-

structured classification algorithm that yields a binary decision tree like C&RT. 

The reason for yielding a binary tree is that a binary tree allows for techniques 

such as pruning, direct stopping rules and surrogate splits to be used. Unlike 

CHAID and C&RT, which handle variable selection and split point selection 

simultaneously during the tree growing process, QUEST deals with them 

separately. It is well known that exhaustive search methods such as C&RT tend 

to select variables with more discrete values, which can afford more splits in the 

tree growing process. This introduces bias into the model, which reduces the 

generalizability of results. Another limitation of C&RT is the computational 

investment in searching for splits. The QUEST method is designed to address 

these problems. QUEST has been demonstrated to be superior to exhaustive 

search methods in terms of variable selection bias and computational cost. In 

terms of classification accuracy, variability of split points and tree size, however, 

there is still no clear winner when univariate splits are used. The QUEST 

algorithm for each split, the association between each predictor variable, and the 

target are computed using the ANOVA F-test or Levene’s test (SPSS 

Whitepaper,1999). However, this algorithm is very slow and impractical for big 

data sets such as the regime recognition data. When this algorithm is applied to 

the training data set, the computer system runs out of dynamic memory. 
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d. C5.0 Tree-Building Algorithm 
A C5.0 model is an algorithm that works by splitting the sample 

based on the field that provides the maximum information gain. Each sub-sample 

defined by the first split is then split again, usually based on a different field, and 

the process repeats until the sub-samples cannot be split any further. Finally, the 

lowest-level splits are reexamined, and those that do not contribute significantly 

to the value of the model are removed or pruned. C5.0 requires a categorical 

response to fit a tree model (Clementine 10.0 Software Reference Notes). This 

decision tree algorithm is the unpublished commercial version of C4.8. A detailed 

approach of this algorithm follows: 

1. Choose an attribute that best differentiates the output attribute values.  

2. Create a separate tree branch for each value of the chosen attribute.  

3. Divide the instances into subgroups so as to reflect the attribute values of 

the chosen node.  

4. For each subgroup, terminate the attribute selection process if:  

 All members of a subgroup have the same value for the output 

attribute, terminate the attribute selection process for the current 

path and label the branch on the current path with the specified 

value.  

 The subgroup contains a single node or no further distinguishing 

attributes can be determined. As in (a), label the branch with the 

output value seen by the majority of remaining instances.  

5. For each subgroup created in step that has not been labeled as terminal, 

repeat the above process (Kdnuggets, 2006, March 11.) 

C5.0 can produce two kinds of models. A decision tree is a 

straightforward description of the splits found by the algorithm. Each terminal (or 

"leaf") node describes a particular subset of the training data, and each case in 
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the training data belongs to exactly one terminal node in the tree. In other words, 

exactly one prediction is possible for any particular data record presented to a 

decision tree. In contrast, a ruleset is a set of rules that tries to make predictions 

for individual records. Rulesets are derived from decision trees and, in a way, 

represent a simplified or distilled version of the information found in the decision 

tree. Rulesets can often retain most of the important information from a full 

decision tree but through a less complex model. However, rulesets do not have 

the same properties as decision trees. The most important difference is that with 

a ruleset, more than one rule may apply for any particular record, or no rules at 

all may apply. If multiple rules apply, each rule gets a weighted "vote" based on 

the confidence associated with that rule, and the final prediction is decided by 

combining the weighted votes of all of the rules that apply to the record in 

question. If no rule applies, a default prediction is assigned to the record. The 

ruleset presentation is useful if it is desirable to see how particular groups of 

items relate to a specific conclusion. For example, the following rule offers a 

profile for a group of cars that is worth buying (Clementine 10.0 Software 

Reference Notes): 

IF engine_in_good_condition = 'yes' AND mileage = 'low' THEN ‘BUY’ 

Some data mining software packages enable users to use 

boosting, cross-validation, and pruning to define an expected noise in the data. 

The next section describes some of the options available in Clementine. 

(1) Boosting. Boosting is a process by which a number of 

trees are grown and their predictions combined in the final model. Boosting 

involves fitting a tree with equal weights on all observations in the training set, 

1( )T x  and estimating training error ( 1γ ) as a function of the error rate of this tree. 

This measures how much better the model is than a naïve model. For example, 

on binary problems, estimating training error ( 1γ ) will measure 1/ 2−ErrorRate 

(large error gives smaller 1γ .) Then the algorithm re-weights the observations; 

larger weights will be given to those observations which are misclassified. After 
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the first procedure, it fits a new tree 2 ( )T x .and estimates 2γ . Then a third model is 

built to focus on the second model's errors, and so on. The final vote is a 

weighted vote or a weighted average of estimated probabilities (Whitaker, 2006.) 

Finally, the cases are classified by applying the whole set of models to them, 

using a weighted voting procedure to combine the separate predictions into one 

overall prediction. Boosting can significantly improve the accuracy of a C5.0 

model, but it also requires longer training. The Number of Trials option in 

Clementine allows the user to control how many models are used for the boosted 

model (Clementine 10.0 Software Reference Notes.) 

(2) Pruning. To prevent overfitting effects of the boosting, the 

pruning process is necessary in order to carry out this algorithm. 

(3) Expected noise level. The expected proportion of noisy or 

erroneous data in the training set. If the training and the test data have different 

noise levels, a problem in the prediction may result. 

(4) Automatic cross-validation. C5.0 will use a set of models 

built on subsets of the training data to estimate the accuracy of a model built on 

the full data set. This is useful if the data set is too small to split into traditional 

training and testing sets. The cross-validation models are discarded after the 

accuracy estimate is calculated. The number of models used for cross-validation 

can be specified (Clementine 10.0 Software Reference Notes).  

e. Recursive Partitioning and Regression Trees (Rpart) 
This decision tree algorithm differs from the set of routines that fit 

classification and regression trees in the areas stated below: 

(1) Choice of splitting criterion. For regression trees, the default is 

that Rpart splits only by minimizing the sum of the two child RSS’s. For 

classification trees, though, one can choose Gini or information splitting. Rpart 

will also produce trees in which the underlying response variable is assumed to 

be Poisson, or where it is a survival object using exponential lifetimes. 
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(2) Automatic cross-validation. By default, Rpart runs ten cross-

validations and stores the results. This makes it easy to prune the tree. The 

number of cross-validations can be defined by the user (Therneau & Atkinson, 

2000.) 

(3) Ability to include loss matrix and/or prior probabilities.  

(4) Weights for classification trees.  

(5) Surrogate and competitor splits: Rpart finds five surrogate splits 

and four competitor splits. “Competitors” just indicate the second-best, third-best 

and so on split at each node; however, this might be useful to the analyst. 

(6) Intelligent NA handling: By default, Rpart uses an intelligent 

missing value handling scheme in which the missing observations are essentially 

ignored split-by-split, while the usual algorithms omit observations with any 

missing values all the way through the tree-building process (Whitaker, 2006). 

2. Other Classification Models   
a. Logistic Regression 

Binomial (or binary) logistic regression is a form of regression which 

is used when the dependent variable is a dichotomy and the independent 

variables are of any type. Multinomial logistic regression exists to handle the 

case of dependents with more classes than two. When multiple classes of the 

dependent variable can be ranked, then ordinal logistic regression is preferred to 

multinomial logistic regression. Continuous variables are not used as dependents 

in logistic regression (Garson, 1998.) 

Logistic regression can be used to predict a dependent variable on 

the basis of continuous and/or categorical independents and to determine the 

percent of variance in the dependent variable explained by the independents; to 

rank the relative importance of independents; to assess interaction effects; and to 

understand the impact of covariate control variables (Garson, 1998).  

Logistic regression applies maximum likelihood estimation after 

transforming the dependent into a logit variable (the natural log of the odds of the 
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dependent variable taking the value “1”.) In this way, logistic regression 

estimates the probability of a certain event occurring. Note that logistic 

regression calculates changes in the log odds of the dependent, not changes in 

the dependent itself as OLS regression does (Garson, 1998.) 

b. Neural Networks 

Neural networks are a class of models inspired by biological 

neurons. In the data mining world, they are used for various modeling problems 

such as prediction, classification and clustering. Neural networks are organized 

in layers: Input, hidden, and output. Each layer is a collection of artificial 

neurons. The neurons in one layer are connected to neurons in the next layer. 

The connections have weights. Fitting a neural network model is finding the 

values of these weights. Weights are found by Feed forward Back propagation 

algorithm, which is a form of Gradient Descent Method. Network architecture as 

well as certain training parameters is decided upon by trial and error. One 

should try various choices and choose the one that gives lowest prediction error 

(Saha, n.d..) 

 

B. MODEL FITTING 
In this section, the models and the algorithms defined in the previous 

section will be applied to the training dataset and the best one will be chosen 

using the test and validation set. S-Plus was used for data editing and fitting 

recursive partitioning and regression trees. The Clementine data mining system 

was used for the other models. This software has the ability to generate rulesets. 

The advantages of these are used in interpreting and validating the best model 

chosen.  

At first, the algorithms are directly fitted on the training set. After inspecting 

the produced outcomes, it was understood that further modeling processes were 

required to build better models (See Data Editing for Model Fitting in Chapter III.) 
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After generating a variety of trees using algorithms presented in a variety 

of software packages, the next step is to eliminate the models with lower correct 

classification rates. The rulesets are a set of “if then” statements from the splits. 

These rulesets were tested for validity by checking the logical statements 

whether or not they really lead to the expected regime. During this process, the 

logical statements are also inspected to see whether or not they comply with the 

physical flight rules. For example, a ruleset which used only engine temperature, 

angle of bank and velocity to classify a descending right turn did not pass this 

step, because there are more important parameters which give better (or more 

accurate) information on that regime such as altitude rate. The best algorithm 

was chosen by deciding which algorithm produced a model that classified a given 

regime using the important parameters for that regime. This criterion was also 

used for checking the validity of the sub-models. 

When the best algorithm was chosen to build the final model, several 

problems were encountered. Those problems were given in section “Remodeling 

with C5.0 to Fix Problems.” The problems are solved by muting (See Chapter III, 

Data Editing Process for Model Fitting), subsetting and only using relevant 

parameters as input.  

The advantages that the software packages offer to users include many 

powerful abilities such as boosting, cross-validating, pruning and defining an 

approximate level of noise in the data. These are all used in every step of fitting. 

The next section offers information about the methods fit to the data (see Figure 

33). Another model is fit using the Rpart library in SPlus. The same procedures 

are applied. For preliminary division in this model, not all of the parameters used 

for preliminary division process in the C5.0 model were used (see Figures 36, 37, 

38, and 43.) Rpart was used to build the classification model (see Figure 44.) 
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Figure 33.   The modeling process with C5.0 (Clementine) 
 
1. The Classification and Regression Tree (C&RT) 
This algorithm was applied to the training set and the model produced was 

analyzed using the test set. The Clementine data mining system was used. The 

correct classification rate for this classification was about 50%. In the coincidence 

matrix, it is very obvious that some regimes are never predicted. The subsets of 

similar regimes were called “families” of regimes. These regimes’ numbers are in 

a sequential order: for example, Regime 21 is a level flight between 0.5-0.6 Vh, 

while regime 22 is a level flight between 0.6-0.7 Vh (see Table 3 in Chapter III.) It 

would be acceptable if regime 22 were classified as regime 21; it would not be a 

bad misclassification. On the other hand, if a model classified an autorotation 

regime as a level flight, that would be a bad classification. (In an autorotation 

regime, the aircraft is losing altitude and torque is at a very low level, but in a 

level flight regime, the aircraft is not climbing or descending.) In the coincidence 

matrix, most misclassifications happen to be to one of the neighborhood regimes. 

The level flight misclassifications are dispersed into level flight regimes. The 

same rule is also applicable to the hover regimes. Some regimes of the hover 

family which are not observed in the set of the predicted regimes were classified 
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as other hover regimes. However, most of the autorotation regimes were found in 

the level flight regimes. These misclassifications are bad ones. Apparently, the 

best classification rates are observed for the regimes that consist of a banked 

turn. The underlying reason for these high rates may be the definite pattern in the 

parameter roll attitude. The change in this parameter from a level flight to a 

banked turn is easily captured so that the algorithm chooses this parameter as a 

very interesting parameter on which to split. The same approach is also valid for 

high-speed regimes. The algorithm may also find the speed as an interesting one 

on which to split. On the other hand, at low speeds, the dynamic environment 

around the aircraft affects the pitot system. Therefore, there can be unexpected 

readings for speed which result in unexpected values. It is easier to capture 

regime changes at higher speeds. For the on-the-ground regime family, most of 

the time, the misclassifications happen to disperse into other on-the-ground 

regimes. The only important problem in this regime family is that aircraft take-offs 

are often misclassified. In some cases, a number of them are classified as level 

flights, which are very bad misclassifications. In the coincidence matrix, there is 

also some inconsistent behavior. Most of the regimes are classified as level 

flights. Even though this model gives a very low correct classification rate, it is 

still applicable. A better model would be possible by rearranging and collapsing 

some levels of regime. This may be done by partitioning the regimes into family 

(neighborhood) groups and giving a single level of regime number to all of that 

family’s members. It is assumed that doing so would increase the correct 

classification rate a great deal, but this idea was reserved. In any case, C5.0 

gives better outcomes than C&RT; so this algorithm will not be used to build the 

final model. 

In the algorithm, there is also a cost matrix which is incorporated into the 

impurity measurement. By default, this matrix has “1” everywhere except on the 

diagonal where the values are “0.” This means classifying Regime i as Regime i 

has no penalty in effect, but classifying Regime i as Regime j has a penalty of 

“1.” This cost matrix can be redefined to incorporate the user’s penalty 
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preference. In the cost matrix, a larger cost was assigned to a number of bad 

misclassifications. The expectation was that these bad misclassifications would 

be corrected. However, the bad misclassifications which were penalized became 

different bad misclassifications. The correct classification rate was improved by 

about only 10%. If there were a smaller number of regimes, using a penalty 

matrix may give better results, since the sample space for classifications (and 

bad classifications) would get smaller (see Appendix A for the coincidence 

matrix.) Since the C5.0 algorithm yields superior results, the approach of using a 

cost matrix in C&RT in Clementine was not used. 

2. Chi-squared Automatic Interaction Detection (CHAID) 
This model was fit on the training set and applied to the test set using 

Clementine. The correct classification rate for this model was about 80%. By 

applying this algorithm, a larger correct classification rate was observed than with 

C&RT. In the coincidence matrix, most of the misclassifications clustered around 

the diagonal which suggests that the misclassifications are not very bad. 

However, the correctness of the classification cannot be directly understood 

through observation of the closeness to the diagonal. For example, regime 5 and 

regime 51 belong to totally different regime families, but in the coincidence matrix 

they are listed one after the other (see Table 3 Chapter III.)  

With the previous algorithm, there were many problems with the level flight 

and hover regimes. Here these problems are reduced to a lower level. However 

there are a small number of bad classifications for the hover turns. These 

regimes are classified as banked turn regimes. All of the flights which are right 

slips in autorotation were classified as descending banked turns. 

In the previous model and in this model, low speed and on-the-ground 

regimes tend to be misclassified. Especially with hover and on-the-ground 

regimes, it may be difficult for the algorithm to capture small changes in the 

parameter values, but those small changes change the regime of the aircraft. 

Take-off regimes were classified as taxi, or vice versa. Hover sideward flight 

regimes happened to be classified as hover turns, and so on.  
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This model would make a lot of sense if the regimes were collapsed into 

families. CHAID is more capable of finding the optimal splits, which allows for a 

smaller number of bad classifications than the previous model. (see Appendix A 

for the coincidence matrix). Since the C5.0 algorithm yields superior results, this 

algorithm was not used. 

3. C5.0 Tree-Building Algorithm 
This algorithm was applied to the training set and analysis to the test set 

using Clementine. This model has the largest correct classification rate, around 

97%. Just as in the previous model, there are misclassifications observed for low 

speed regimes. The most definite one is the misclassification of taxi regimes. 

Most of the time those regimes were classified as take-off regimes. 

For correctness purposes only, this model is stronger than the previous 

one. This statement is also true for reasonable misclassifications. By using this 

model, the collapsing of the levels of the regimes is no longer needed. The only 

big problem is the possible overfitting in the model. To prevent it, the expert 

options were used to severely prune the tree and stop splitting after attaining a 

threshold of information gain.  

The model was validated by checking the generated tree to discern 

whether or not it makes sense. Since there are about 50 regimes, the tree 

generated by the model can not be checked easily. Clementine has a valuable 

feature for its tree models, which is the ability to generate rulesets from the 

constructed tree. When these rulesets were created and analysis began, it was 

understood that there were a lot of redundant splits. The most definite ones are 

splits on small values of angle of bank, but since roll attitude and angle of bank 

give the same information. One of these parameters that contain the same 

information may not be needed in the model. Radar.Altitude or PA (pressure 

altitude) splits were not important splits for classifying level flights. KIAS and 

KCAS splits were unnecessary in the presence of the Vh.fraction in the model. 

Some parameters, such as Nr, never showed up in the splits of the rulesets. 

Since it is just a percentage value and does not change very much accross 
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different regimes, it is not an interesting one to split on. Another parameter that 

did not show up in the rulesets was Take.off.Flag. Actually this parameter was a 

very important one, because if it is “0,” it means the regime is a take-off regime 

regardless of the other parameters. The same argument is also true for 

Weight.on.Wheels. Weight.on.Wheels should be the first parameter to split on, 

but the logical statements (splits) on this parameter were observed in (lower) 

inner layers of ruleset. To make sure that the C5.0 algorithm used Take.off.Flag 

and Weight.on.Wheels, these two parameters were used to divide the full data 

into smaller datasets (see Figure 36.) 

  
Figure 34.   The Behavior of The Parameter Weight.On.Wheels 

 
In the plot above left, the x-axis shows the time frame for a take-off regime 

and the y-axis shows the values for Weight.on.Wheels. Only a small proportion of 

the observations has the value of “0.” In contrast, in the plot above right, the 

parameter has the value of “1” most of the time. The plots above are from two 

different take-offs which produced two different patterns for Weight.on.Wheels. In 

the first pattern only a small proportion of the observations was “1” and in the 

second one only a small proportion was “0.” For the same regime, the parameter 

values did not present the same information. These two different patterns are not 

consistent. As expected, the value changes for Weight.on.Wheels were observed 

only in take-off regimes. Therefore, there were only two sets of observations for 

the take-off regime that could be used in classification process. The algorithms 
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had to use this inconsistent information on Weight.on.Wheels, and this prevents 

Weight.on.Wheels from being the first parameter to split on. If the values of 

Weight.on.Wheels had the same pattern and overlapped most of the time, then 

Weight.on.Wheels would supply consistent information to the algorithms and 

become the first split. Since some planned (expected) values were not observed 

for Control.Reversal.ID, there were no splits on this parameters or the splits are 

in the undesired layer. 

The problems encountered in model validation are summarized below: 

1. Unnecessary  splits on the small values of some parameters 

2. Very important categorical parameters (such Weight.on.Wheels) are 

not in the rulesets or they are at lower (inner) layers of the rulesets, 

which means they are not in effect at the right place. 

3. Redundant parameters in the model. 

For all of the reasons given above, this model, despite its high correct 

classification rate, cannot be accepted as valid. 

4. Remodeling with C5.0 to Fix Problems  
This section focuses on the procedures used to overcome the modeling 

problems discussed at the end of the previous section (see Appendix B.) 

a. Unnecessary Splits on the Small Values of Some 
Parameters 

To prevent this problem, values of some of the important 

parameters in a usual are muted by setting to a default value, i.e., “0.” For 

example, the aircraft will have a roll angle to either side at an level which is 

caused by the balancing forces or the environment. If the roll angles are within an 

acceptable interval, they can be set to “0.” This process made the algorithm think 

that those values are not interesting enough to split on, and may aid in clearing in 

clearing the noise in the rulesets. Eventually the ruleset will become more 

interpretable or reasonable (see Data Editing Process for Model Fitting, Chapter 

III.) 
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b. Very Important Categorical Parameters are Not in the 

Rulesets 
Categorical parameters which predominantly take one level are not 

often used for splitting, even though they might be very important for 

classification. One solution is to build sub-models by filtering the training data 

using different parameters, and fitting trees to those smaller data sets.  This 

method will ensure that the parameter changes or the different levels are 

captured by the model. 

(1) By partitioning the training set into subsets. The full data 

set will be divided into smaller data sets. The parameters used for this are 

Weight.on.Wheels, KCAS, and Control.Reversal.ID. Filtering the data using 

Weight.on.Wheels will make two smaller data sets. One of them will have “0” for 

all Weight.on.Wheels parameter values. The other one will have “1.” The smaller 

data set which has “0” for Weight.on.Wheels will be called In-the-air data set. The 

other one will be the On-the-ground data set. The resulting in-the-air data set will 

be filtered into fast and slow (low speed) regimes. The cut-off value for the 

speed, 43 knots, which was used in the Goodrich documents as a threshold 

value, was observed in some rulesets as a primary split. To have a minimum 

number of unwanted regimes in subsets, 44.72 knots will be used as the cut off 

value. This value was determined by trying out some values that are found by 

visual inspection of the plots. The value which results in the smallest number of 

unwanted regimes in different families is 44.72. Finally, those small data subsets 

of the In-the-air data set will be divided into two by using the presence or 

absence of Control.Reversal.ID. A further division and filtering is also applicable 

for Landing.Flag and Take.off.Flag (see Figures 36, 37, 38.) The same 

subsetting in Figure 38 was also applied to the “In the air and fast” data set. 

(2) Fitting a model to each subset. Now the subsets have 

regimes that belong to the same regime family. Even if the model wrongly 

classifies a regime, the misclassification will be in that family. On the other hand, 
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filtering also causes some regimes to appear in more than one subset. The most 

readily apparent one is the take-off regime. The Weight.On.Wheels parameter 

values for Take-off is “1” as long as the aircraft’s altitude above ground level is 

“0”; after the aircraft is off the ground, this parameter turns into “0.” This problem 

also arises from instantaneous and intended changes in the parameters which 

were used for subsetting. An instantaneous drop in the speed in a level flight, 

even if the true value if the regime belongs to the high speed family, will cause 

these observations to go to the low speed subset. They will, however, be in the 

wrong family and the model will include those regime numbers into the model 

fitting and use them for predictions. 
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Figure 35.   The Behavior of a Take-off Regime in Subsetting Process 

 

Data Set

Weight.On.Wheels = 1 ON THE GROUND SET
Tree Model1

Weight.On.Wheels = 0 IN THE AIR SET

Landing Flag or Take off = 1
Tree Model2

Data Set
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Tree Model1

Weight.On.Wheels = 0 IN THE AIR SET

Landing Flag or Take off = 1
Tree Model2  

 

Figure 36.   Subsetting the Big Data into Smaller Sets (WOW, Flags) 
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IN THE AIR DATA SET

KCAS < 44.72 Data Set
(In the air and slow )

KCAS >= 44.72 Data Set
(In the air and fast)

IN THE AIR DATA SET

KCAS < 44.72 Data Set
(In the air and slow )

KCAS >= 44.72 Data Set
(In the air and fast)

 
Figure 37.   Subsetting “In the air data“ Using KCAS 
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Figure 38.   Subsetting “In the air and slow” Dataset Using Control.Reversal.ID 
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Figure 39.   The Names of the Sub-trees 
 

(3) Applying the sub-models to the training and test data. 

The training data is divided into subsets using filters; at each terminal node a tree 
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model is fitted, and a ruleset is generated. The same filtering will be applied to 

the test set; then the subset is directed to the corresponding rulesets. Finally, 

there is a coincidence matrix for analysis of each model. 
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Figure 40.   The Filtering and Model Fitting Stream (see Appendix B.) 

(3) Analyzing the rulesets and Validation. Each ruleset is 

checked to discover if it really makes sense. This was done by asking two 

different pilots. The pilots were given the “if”  statements” and asked to name the 

approximate regime. Most of the time, they were able to correctly classify the 

regime using the if-statements of the rulesets. In a sense this process can be 

called model validation with a practical approach. The only potential difficulty with 

the model was that there were still some unnecessary parameters that could be 

taken out of the model. The next section discusses this issue. 
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Figure 41.   The Filtering and Testing Stream 
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c. Redundant parameters in the model 
Parameters which were unnecessary were taken out of the model. 

For example, TGT is unnecessary, because it gives information about the engine 

limits. We do not need that information since we do not have such a regime 

present in the dataset. Weight.On.Wheels and KCAS are already out of the 

model since they were used to filter the data. Vertical.Accel and RateOfClimb 

(RC) are not needed in the model since Altitude.Rate gives nearly the same 

information. Radar.Altitude gives some information on the regime up to the out-

of-ground-effect hover altitude. The presence of values bigger than this hover 

altitude in the model may cause numerous misclassifications because an aircraft 

can be in the same regime at different altitudes (or vice versa). Therefore, only 

the values up to the out-of-ground-effect hover altitude were included in the 

model by setting the larger values to NA. Finally, Time.Stamp should never be 

used. 

5. Recursive Partitioning and Regression Trees (Rpart) 
For this model, the data sets are subset using only Weight.On.Wheels and 

KCAS. There are three different sub-tree models: one is for the “On the ground” 

data set, one is for the “In the air and slow,” and the last one for the “in the air 

and fast.” Not all of the parameters are used as input parameters; only the ones 

most likely to give the best information on predicting the regime are used. For the 

“On the ground“ model, no data editing process was applied. None was needed 

because as Table 4 indicates, the number of the regimes for this family is not 

numerous. 

Data Set

On The Ground Set (WOW =1)
OGTree

IN THE AIR AND SLOW(KCAS<44.72) 
ASTree

IN THE AIR AND FAST(KCAS>=44.72)
AFTree

Data Set

On The Ground Set (WOW =1)
OGTree

IN THE AIR AND SLOW(KCAS<44.72) 
ASTree

IN THE AIR AND FAST(KCAS>=44.72)
AFTree

 
Figure 42.   The Data subsets for Rpart Model 
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The classification trees are large as a result of the large number of regime 

levels and the large number of parameters on which the algorithm split. The trees 

built are pruned as much as possible. At first, using a small complexity 

parameter, such as cp=0.001, a big tree is constructed. As expected this tree is 

very complex. The tree is then pruned applying Breiman’s One SE rule. The rule 

is to simply find the cp (complexity parameter) for which (the cross validated 

estimate of error) xerror < (best xerror + best xerror’s corresponding xstd). 

Actually, in this specific case, the tree can be pruned by a little more than the 

One SE rule with little resulting effect on the tree. The pruning process for a 

model with a 50-level-response is very sensitive, because some values of cps do 

not produce a model that predicts all the levels of response. The number of 

predicted levels of the regime begins to get smaller than its actual value. The 

ones that are misclassified are often very bad classifications, and they appeared 

to be all around the coincidence (confusion) matrix. The One SE rule used to 

prune the trees may cause more complexity and size than trees produced by 

using a cp by visual inspection of cp plots. On the other hand, the One SE rule is 

better for our prediction purposes. 

 There are two main problems in modeling by subsetting on some 

parameters before fitting trees. The first one is that some observations go into 

the wrong subset. For example, the regime 5 is the take-off regime, but not all 

the observations in this regime have the Weight.on.Wheels parameter “0” or vice 

versa (see Figure 43.) 

Since the problem stated above is caused by the nature of the data it can 

not be fixed using different data editing processes. Even if they are not in the 

correct families, they can be considered acceptable classifications.  

The second problem caused by subsetting is a natural result of the first 

problem. Before partitioning, the distribution of the regimes is uniform, but in the 

smaller subsets it is not. To solve this problem, loss matrices which assign costs 

to misclassifications of different types are used. Different costs for 
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misclassification in CART can be modeled either by means of modifying the loss 

matrix or by means of using different prior probabilities for the classes, which 

again should have the same effect as using different weights for the response 

classes (Breiman et al. as cited in Williams, 2004.) 
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Figure 43.   Weight.on.Wheels in a Take-off Regime 

 

The loss matrices are created from the table of predicted values 

(coincidence matrix) of the test set. The tree is pruned using the One SE rule, 

and the predicted table is formed into a loss matrix by a function. For each 

element in the matrix, this function checks if that element is on the diagonal 

which means it is a correct classification and, assigns a penalty of zero to that 

element. If that element is not on the diagonal and greater than a threshold 

value, the function uses another function to determine its penalty depending on 

the absolute value of (i-j). If this value is small (i.e. close to the diagonal which 

means they are neighbors, and they belong to same family), a small penalty is 

assigned; if it is not, the greater penalty is assigned depending on the absolute 

value of (i-j). The threshold value used by the function is acquired by visual 

inspection of the coincidence matrix by finding a value less than which a lot of 
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misclassifications can be accepted as good misclassifications. For example, in 

the table below, 7 is selected as the threshold value. If the number of 

misclassification is greater than that value, it is considered bad misclassification. 

If the element is not on the diagonal and the value is less than the threshold 

value, it is considered a good misclassification and assigned a penalty of one 

(see Appendix E.) 

10 11 12 13 14 15 16 17 26 27 28 5 7 8 9
10 149 3 4 4 4 0 0 0 0 0 0 0 0 3 1
11 1 157 2 7 0 0 0 0 0 0 0 0 0 0 0
12 0 3 132 9 0 0 0 0 0 0 0 0 6 6 12
13 3 0 1 160 0 0 0 0 0 0 0 0 0 0 3
14 2 0 3 0 149 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 155 10 2 0 0 0 0 0 0 0
16 0 2 0 0 0 6 157 2 0 0 0 0 0 0 0
17 0 0 0 0 0 4 0 163 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 84 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 58 0 0 0 0 0
28 0 0 0 0 0 0 0 0 2 0 5 0 0 0 0
5 2 1 1 1 1 0 0 0 0 0 0 60 0 0 0
7 0 1 2 0 0 0 0 0 0 0 0 7 142 13 0
8 0 0 6 0 0 1 0 0 0 0 0 0 14 157 1
9 0 0 1 7 1 0 0 0 0 0 0 0 0 3 173  

Table 10.   Finding the Threshold Value for the Penalty Function 
 

Using the loss matrix created in this way, a new tree model is fitted and 

pruned again. The test set is again directed into the model, and the coincidence 

matrix is formed. Since Rpart automatically divides the training set into subsets 

for cross validation, there is no large improvement in the outcomes. On the other 

hand, this approach guarantees that not using prior probabilities in the model is 

no longer an important issue (see Figure 44.) 
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Figure 44.   The Rpart Modeling Process 
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Even when the trees are pruned as much as possible, they are still very 

complex. The lower braches are not that important as long as the main branches 

are giving the correct sense of the classification. Therefore, to understand more 

clearly, the trees will be “snipped” (using the functions from the Rpart library) 

when printed. The Rpart model has quite reliable correct classification rates. The 

Rpart models give nearly the same results as the C5.0 models.  

6. Other Possible Models 
To make sure that the other options such as logistic regression or neural 

networks do not give better rates than the best model, these methods were 

applied. 

a. Logistic Regression 
This method was applied by using the first nine scores of the 

principal components of the continuous parameter and the categorical 

parameters as input variables. The first nine scores captured 93% of the 

variability in the data. The overall correct classification rate was about 55%. 

b. Neural Networks 
This model has a correct classification rate of about 55%. Actually, 

the algorithm performs better in sub-models where the number of levels of the 

response variable is smaller. Furthermore this model is more useful if the 

regimes are collapsed more into smaller families. Neural networks were not 

pursued farther in this study. 
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V. RESULTS AND CONCLUSIONS  
 
A. RESULTS  

As mentioned in the previous chapter, C5.0 and Rpart models have 

superiority over the other possible models. These two models are selected as the 

best algorithms and further modeling procedures are used to obtain better 

models. In this chapter, these two models are analyzed and compared. In the 

table below a summary of the correct classification rates are given. 

C5.0 Model Correct Classification Rate Rpart Correct Classification Rate 
On the Ground Model 87.6% On the Ground Model 89.0%

Take-offs and Landings Model 85.3% In the Air and Slow 92.6%
In the Air and Slow with CR 100.0% In the Air and Fast 97.5%
In the Air and Slow w/o CR 92.2%
In the Air and Fast with CR 100.0%
In the Air and Fast w/o CR 99.5%  

Table 11.   The Correct Classification Rates 
 

The preliminary partitioning process minimized the number of bad 

classifications by fitting sub-models on each data subset. On the hand, this 

process caused some classification errors. There are two reasons: first is when 

unobserved values of the subsetting parameters, such as Control.Reversal.ID, 

caused those observations to be directed into wrong regime families, and the 

second is when instantaneous but unintended changes in the parameter values 

of KCAS directed those observations directed into wrong regime families. Those 

observations in the wrong families were included in modeling process in 

whichever the data subsets they fell into. The response parameters for those 

regimes were correctly predicted by the models, even if the observations were 

directed into the undesired families. In any particular flight, a single regime may 

seem to consist of several different regimes. For example, when the pilot tries to 

execute a right turn in a level flight regime, there may be some weather 

conditions which might prevent a smooth turn and the aircraft might have bigger 

values for KCAS just for a moment until this is corrected by pilot inputs. 

Therefore, a planned right turn in flight may actually contain not only a right turn 

regime but also some other regimes. Those other regimes may not even be 
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members of the same family. This is a problem for any model-fitting process 

since there is a response already assigned to those observations in that time 

interval. However, this is not a problem in normal operation, since those 

deviations from the plan really do represent different regimes being flown, even if 

only for a short period, and those different regimes should be recorded for usage 

monitoring. Observations of this sort -- representing isolated instances of one 

regime within a bigger set of observations of another regime -- will be directed 

into the wrong families but should not cause increased error rates in normal 

operation. 

1. The Analysis and Results of the C5.0 Model 
The C5.0 model was built using Clementine 10.0. The model outputs were 

rulesets. When reading the rules, if there are no if-statements on a parameter, it 

should be assumed that its values do not have interesting values; they are, 

therefore, in the intervals of usual parameter values. Having no “if” statements on 

the Airspeed.Vh.Fraction, for example, does not mean that the aircraft is not 

moving. Since the model consists of sub-models (sub-trees), those smaller 

models will be analyzed individually to reach an overall result. 

a. On the Ground Model 
This model was built on the Weight.on.Wheels = 1 data subset. 

(1) Correct classification rate. This model has a correct 

classification rate of 87.64% (532/607). 

(2) Coincidence matrix. The matrix shows that the model can 

not classify regimes 3 and 4 very well. In these two regimes, the aircraft is 

executing a taxi turn to left/right. The same problem is also very evident for 

regime 5 (take-off) and regime 4. 

Regimes 2 3 4 5
2 137 14 5 10
3 3 167 0 0
4 18 2 165 0
5 3 18 2 63  

Table 12.   The Coincidence Matrix for On the Ground Model (rows 
show the actual) 
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(3) Rulesets.Torque is a very strong parameter in rulesets. A 

quick inspection offers an idea of different regime patterns. Since the subsetting 

process is executed using Weight.on.Wheels before model fitting, there is a main 

“if” statement at the outer most layer of the rulesets; and that is “If 

Weight.on.Wheels = 1”. Inner layers of statements are created by the sub-tree. 

(see Appendix C Figure 49 to see a sample part of the rulesets for this model.) 

b. Take-offs and Landings Model 
This model was built on the Take.off.Flag = 1 or Landing.Flag = 1 

subset. There is no landing regime in the experimental flight so that regime can 

be not predicted in the model. The Take.off.Flag parameter has a value of “1” 

when the aircraft is in a take-off regime. This values is expected in this regime, 

but a very small proportion of records with this value of Take.off.Flag fall in the 

next regime flown, regime 7. Regime 7 is not a member of this family, but 

Regime 7 is a hover regime and may be executed right after a take-off regime, so 

this difficulty was accepted as the nature of the flight, and it is not a very bad 

classification.  

(1) Correct classification rate. This model has a correct 

classification rate of 85.29% (29/35). 

(2) Coincidence matrix. The matrix below shows that the 

model can classify take-off regimes very well. 

Regimes 5 7
5 27 1
7 4 2  

Table 13.   The Coincidence Matrix for The Take-off and Landings 
Model 

(3) Rulesets. There is only one statement in the ruleset, that 

is “if Torque <= 43.907 then 5 else 7.” 
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c. In the Air and Slow and Control Reversals Present 
Model 

This model was built on the Weight.on.Wheels = 0 and 

KCAS<44.72 and !Control.Reversal.ID=0 (no Control.Reversal.ID present) data 

subset. There must be regime 15, 16, and 17 in this subset, but 15 and 17 are 

not observed. These regimes were flown in the flight and expected to be in this 

subset. Their absence is due to the Control.Reversal.ID: the expected values for 

this parameter were not observed. This caused a problem in the subsetting 

process, which lead to some observations being directed into wrong regime 

families. In this model, only observations in regime 16 are in the subset. All 

predictions therefore default to regime 16.The correct classification rate is 100%. 

d. In the Air and Slow; No Control Reversals Present Model 
This model is built on the Weight.on.Wheels = 0 and KCAS<44.72 

and Control.Reversal.ID=0 subset. No regime 5 data should be in this subset. 

Since some observations with of Weight.on.Wheels = 0 are in regime 5, some 

proportion of observations belonging to that regime fall in this subset. Regime 26 

and 27 have some observations with KCAS<44.72; they are also in this subset. 

They are bad misclassifications. 

(1)  Correct classification rate. This model has a correct 

classification rate of 92.24% (1879/2037). 

Correct 1879 92.24%
Wrong 158 7.76%
Total 2037  

Table 14.   The Correct Classification Rate for The In the Air And 
Slow; No Control Reversals Present Model 

 
(2) Coincidence matrix. The matrix (see Table 15) shows 

that the model is recognizing regimes very well. There are some 

misclassifications between in-ground-effect hover (regime 7) and out-of-ground-

effect hover (regime 8), but they are not bad misclassifications. Regime 7 was 

also classified as regime 15, 16 and 17. Actually, regimes 15, 16 and 17 should 
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have had control reversals, but Control.Reversals.ID was not observed for any of 

those regimes. That’s why the observations of those regimes were directed into 

this data subset. Because a regime which contains a reversal (perhaps by an 

evasive maneuver) can not be accepted as a normal hover regime, even if they 

were in the same family, these misclassifications are bad misclassifications (see 

Table 15.) 

Regimes 10 11 12 13 14 15 16 17 26 27 28 5 7 8 9
10 161 0 1 2 4 0 0 0 0 0 0 0 0 0 0
11 0 162 0 3 0 0 0 0 0 0 0 0 0 0 2
12 2 0 154 4 3 0 0 0 0 0 0 0 4 1 0
13 1 2 7 151 2 0 0 0 0 0 0 0 0 0 4
14 0 0 0 0 152 0 0 0 0 0 0 0 1 0 1
15 0 0 0 0 0 167 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 153 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 167 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 73 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 58 0 0 0 0 0
28 0 0 0 0 0 0 0 0 1 0 6 0 0 0 0
5 0 0 1 0 1 0 0 0 0 0 0 57 3 1 2
7 0 2 5 0 0 6 10 13 0 1 0 1 103 21 3
8 1 0 5 1 0 0 0 0 0 0 0 0 8 161 3
9 0 4 7 7 0 0 0 0 0 0 0 1 1 5 154  

Table 15.   The Coincidence matrix for the model In the Air And 
Slow; No Control Reversals Present 

 
(3) Rulesets. Due to the preliminary subsetting process, 

there is a main “if”statement at the outer most layer of the rulesets; it is “if the 

Weight.on.Wheels = 0 and KCAS<44.72 and Control.Reversal.ID=0.”Inner layers 

of statements are always built by this sub-models. See Appendix C Figure 50 to 

see a sample portion of the rulesets for this model. 

e. In the Air and Fast and Control Reversals Present 
This model is built on the Weight.on.Wheels = 0 and KCAS>=44.72 

and !Control.Reversal.ID=0 subset. Only the observations with 

Control.Reversal.IDs are in this model. The other portions of these regimes’ data 

are in the other data subset without Control.Reversal.IDs.  

(1) Correct classification rate. This model has a correct 

classification rate of 100% (42/42). 
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Correct 42 100.00%
Wrong 0 0.00%
Total 42  

Table 16.   The Correct Classification Rate for In the Air and Fast; 
Control Reversals Present 

 

(2) Coincidence matrix. The matrix shows that the model is 

very powerful in classifying the regimes in this family.(see Table 17.) 

Regime 26 27 28 45 48 50 52 54
26 2 0 0 0 0 0 0 0
27 0 6 0 0 0 0 0 0
28 0 0 3 0 0 0 0 0
45 0 0 0 9 0 0 0 0
48 0 0 0 0 5 0 0 0
50 0 0 0 0 0 9 0 0
52 0 0 0 0 0 0 2 0
54 0 0 0 0 0 0 0 6  

Table 17.   The Coincidence Matrix for the Model In the Air and Fast; 
Control Reversals Present 

 
(3) Rulesets. There is a main “if-statement” at the outer most 

layer of the rulesets; it is “the Weight.on.Wheels = 0 and KCAS>=44.72 and 

!Control.Reversal.ID=0.” Inner layers of statements are built on this one. See 

Appendix C Figure 51 to see a sample part of the rulesets for this model. 

f. In the Air and Fast and No Control Reversals Present 
This model is built on the Weight.on.Wheels = 0 and KCAS>=44.72 

and Control.Reversal.ID=0 subset. There are some observations that should 

have control reversals but in the data they do not. When Control.Reversal.ID was 

used as the filtering parameter, those observations were directed into this family. 

This is a natural result of the data, but they lead to bad classifications. Another 

bad classification is regime 9. There are some observations in regime 9 that have 

KCAS values greater than 44.72. 
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Correct 5785 99.45%
Wrong 32 0.55%
Total 5817  

Table 18.   The Correct Classification Rate for In the Air And Fast; 
No Control Reversals Present 

 
(2) The Coincidence matrix. The matrix shows that the 

model is very powerful in classifying the regimes in this family. 

 

 
Table 19.   The Coincidence Matrix for the Model In the Air And Fast; 

No Control Reversals Present 
 

(3) Rulesets. There is a main “if” statement at the outer most 

layer of the rulesets; it is “if the Weight.on.Wheels = 0 and KCAS>=44.72 and 

Control.Reversal.ID=0”. The inner layers of statements are built by this model. 

See Appendix C Figure 52 for a sample portion of the rulesets for this model. 

2. The Analysis and Results of the Rpart Model 
This model was built using the Rpart library in the S-Plus software 

package. There are three sub-models fitted to three different subsets, and the 

coincidence matrices are formed using the test set. There are two coincidence 
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matrices for each model; one is from the initial model fitting without loss matrix, 

and the second one is from the same model fitting with loss matrix. Here only the 

second one will be given. In fact these two matrices are not very different. The 

loss matrix was formed by using the predicted values of the test set. When 

deciding on the penalty for each misclassification, the process tries to focus only 

on the bad misclassifications. 

a. On the Ground Model 
This model is built on the Weight.on.Wheels = 1 data subset. 

(1) Correct classification rate. This model has a correct 

classification rate of 89.8% (545/607) (see Table 20.) 

 

Regimes 2 3 4 5
2 141 11 4 10
3 8 158 3 1
4 0 3 182 0
5 8 1 13 64  

Table 20.   The Coincidence Matrix of the On the Ground Model in 
Rpart 

 
(2) Coincidence matrix. The matrix shows that the model is 

having the same problems as the C5.0.The regime 2 and 3 are misclassified 

fairly often. The same problem also exists for regime 4 and 5 (see Table20). 

(3) Classification tree. The simplified version of the tree is 

given in Appendix C Figure 53. 

b. In the Air and Slow Model 
This model is built on the Weight.on.Wheels = 0 and KCAS<44.72 

data subset. 

(1)  Correct classification rate. This model has a correct 

classification rate of 92.6% (1916/2069) (see Table 21.) 
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10 11 12 13 14 15 16 17 26 27 28 5 7 8 9 Total
10 151 3 4 4 2 0 0 0 0 0 0 0 0 3 1 168
11 1 161 0 4 0 0 0 0 0 0 0 0 0 0 1 167
12 0 3 127 9 0 0 0 0 0 0 0 0 6 4 19 168
13 3 3 0 161 0 0 0 0 0 0 0 0 0 0 0 167
14 2 0 3 0 149 0 0 0 0 0 0 0 0 0 0 154
15 0 0 0 0 0 157 10 0 0 0 0 0 0 0 0 167
16 0 2 0 0 0 0 160 5 0 0 0 0 0 0 0 167
17 0 0 0 0 0 4 2 161 0 0 0 0 0 0 0 167
26 0 0 0 0 0 0 0 0 84 0 0 0 0 0 0 84
27 0 0 0 0 0 0 0 0 0 58 0 0 0 0 0 58
28 0 0 0 0 0 0 0 0 2 0 5 0 0 0 0 7
5 2 1 1 1 1 0 0 0 0 0 0 60 0 0 0 66
7 0 1 3 0 0 0 0 0 0 0 0 7 142 12 0 165
8 0 0 5 0 0 1 0 0 0 0 0 0 8 164 1 179
9 0 0 1 4 1 0 0 0 0 0 0 0 0 3 176 185

2069
diag 151 161 127 161 149 157 160 161 84 58 5 60 142 164 176 1916

0.926Correct Classification Rate  
Table 21.   The Summary of the In the Air And Slow Model in Rpart 

 
(2) Coincidence matrix. The matrix shows that the model has 

problems in classifying the hover regimes. The misclassifications are not big in 

numbers nor bad classifications (see Table 21.) 

(3) Classification tree. The simplified version of the tree is 

given in Appendix C Figure 54. 

b. In the Air and Fast Model 
This model is built on the Weight.on.Wheels = 0 and KCAS>=44.72 

data subset. 

(1) Correct classification rate. This model has a correct 

classification rate of 97.5% (5654/5799) (see Table 22.) 
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19 20 21 22 23 24 25 55 59 60 26 28 27 56 36 37 40 41 42 43 44 45 46 48 49 5 50 51 52 53 54 57 61 63 64 65 Total
19 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150
20 23 145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168
21 0 0 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150
22 0 0 0 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 176
23 0 0 0 1 170 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 175
24 0 0 0 0 0 150 0 0 1 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168
25 0 0 0 0 0 0 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168
55 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 101
59 0 0 0 0 0 1 0 0 117 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 121
60 0 9 0 0 0 0 0 4 8 151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 172
26 0 0 0 0 0 0 0 0 0 0 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 169
28 0 0 0 0 0 0 0 0 0 0 0 166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 169
27 0 0 0 0 0 0 0 0 0 0 0 0 176 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 176
56 0 0 0 0 0 0 0 0 0 0 0 0 0 178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 178
36 0 0 0 5 0 0 0 0 0 0 0 0 0 0 157 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 162
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 171 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 173
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167
42 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 6 0 3 156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 177 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 177
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 156 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 168
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 156 0 0 0 0 0 0 0 0 0 0 0 0 0 168
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167 0 0 0 0 0 0 0 0 0 0 0 0 167
49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 166 0 1 0 0 0 0 0 0 0 0 0 167
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167 0 0 0 0 0 0 0 0 0 0 167
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 171 0 0 0 0 0 0 0 0 0 171
51 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 161 0 0 0 0 0 5 0 0 168
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 162 0 0 0 0 2 0 0 167
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167 0 0 0 0 0 4 171
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 171 0 0 0 0 0 171
57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 167 0 0 0 0 169
61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167 0 0 0 167
63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 170 0 0 170
64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167 0 167
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 167 168

5799

diag 150 145 150 169 170 150 168 100 117 151 169 166 176 178 157 171 167 167 156 177 156 18 156 167 166 167 171 161 162 167 171 167 167 170 167 167 5654

Correct Classification Rate 0.974996  
Table 22.   The Summary of the In the Air And Fast Model in Rpart 

 

(2) Coincidence matrix. The matrix shows that the model has 

great power in classifying these regimes. The parameter values are more distinct 

for the various regimes, and this aids the algorithm in classification (see Table 

22.) 

(3) Classification tree. The simplified version of the tree is 

given in Appendix C Figure 55. 
3. Finding the Correct Classification Rate for Future Predictions 
To find the correct classification rates for prediction using new data sets, a 

weighted average of the rates should be calculated for both sets of models. The 

distribution of the regime families that might be seen in a randomly selected-flight 

are used as the weights for averaging the correct classification rates. The 

number of each regime in the predicted regime vector (produced by a model) is 

counted to extract a probability distribution for each regime family. An example is 

given in the following table. 
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The C5.0 MODELS
Correct 

Classification 
Rates

A Possible Distribution of 
Predicted Regime 

Families

The On the Ground Sub-Model 87.6% 0.1
The Take-offs and Landings Sub-Model 85.3% 0.05
The In the Air and Slow with CR Sub-Model 100.0% 0.05
The In the Air and Slow w/o CR Sub-Model 92.2% 0.1
The In the Air and Fast with CR Sub-Model 100.0% 0.05
The In the Air and Fast w/o CR Sub-Model 99.5% 0.65
The Overall Average Correct Classification 96.9% 96.9%

The RPART MODELS
Correct 

Classification 
Rates

A Possible Distribution of 
Predicted Regime 

Families
The On the Ground Sub-Model 89.0% 0.1
The In the Air and Slow Sub-Model 92.6% 0.2
The In the Air and Fast Sub-Model 97.5% 0.7
The Overall Average Correct Classification 95.7% 95.7%  

Table 23.   Finding the Correct Classification Rate for Predictions 
 

For the example given in the table above, the overall correct classification 

achieved by C5.0 is 96.9%, and for Rpart model the correct classification rate is 

95.7%. 

4. The Overall Correct Classification Rate Achieved By This 
Study 

The achieved overall correct classification is over 95%. The distribution for 

the regime families are extracted from the training dataset. Naturally, the 

distribution of regime families of a randomly-selected flight may be very different 

than the one in the training set. Here, the number of observations for each 

regime flown was the same in the training dataset. The calculation is given in the 

table below. 
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The C5.0 MODELS
Correct 

Classification 
Rates

The Distribution of  
Regime Families in The 

Training Data

The On the Ground Sub-Model 87.6% 0.1
The Take-offs and Landings Sub-Model 85.3% 0.02
The In the Air and Slow with CR Sub-Model 100.0% 0.06
The In the Air and Slow w/o CR Sub-Model 92.2% 0.16
The In the Air and Fast with CR Sub-Model 100.0% 0.26
The In the Air and Fast w/o CR Sub-Model 99.5% 0.4
The Overall Average Correct Classification 97.0% 97.0%

The RPART MODELS
Correct 

Classification 
Rates

The Distribution of  
Regime Families in The 

Training Data

The On the Ground Sub-Model 89.0% 0.1
The In the Air and Slow Sub-Model 92.6% 0.24
The In the Air and Fast Sub-Model 97.5% 0.66
The Overall Average Correct Classification 95.5% 95.5%  
Table 24.   The Overall Correct Classification Rate Achieved by This 

Study 
 
B. CONCLUSION 

The purpose of this study was to build a model that predicts the flight 

regimes. Models were chosen to produce as few as bad misclassifications. When 

a single model was built on the original data, there were numerous bad 

misclassifications and some important parameters were not used at the 

appropriate branches as the parameters on which to split. To prevent these 

problems, the data was divided into smaller sets using important and very 

distinctive parameters to make sure that they contribute to the model at the 

correct step. Out of many options, C5.0 and Rpart algorithms produced the 

superior results. By giving more attention to these two models, better results 

were achieved. The approach was the same for both models: Filtering or 

rounding some parameters to mute the uninteresting values, fitting sub-trees to 

subsets, pruning the trees as much as possible, using a test set to form predicted 

values to obtain the correct classification rates, and inspecting the rulesets or 



 89

classification trees to determine whether or not they produced valid physical 

rules. Both models have nearly the same problems in classifying low-speed 

regimes, and they have great power in classifying high-speed regimes. The 

overall performance of the models was nearly the same. When interpreting the 

model, using the ruleset may be easier than using the classification trees. For 

both models, preliminary partitioning using the important parameters ensures the 

minimum number of bad misclassifications. This approach also guarantees that 

the most of the misclassifications are within a regime family. 

 A future study may focus on the sensitivity analysis of the classification 

models. A possible research question might be “how good is the model at 

predicting regimes of an independent flight?” The flight data might be preferably 

collected in various conditions, such as with varying weight of the aircraft and 

under significantly different weather conditions. 
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APPENDIX A. THE COINCIDENCE MATRICES for C&RT AND 
CHAID 

10 12 13 15 2 20 25 3 36 37 4 54 55 56 57 59 63 7 8
10 230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 132 0
12 0 209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59
13 0 0 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9
14 2 174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 311 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 805 0 0 0 0 0 21 0 0 0 0 0 0 0 0
20 0 0 0 0 0 572 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 323 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 293 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 287 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 598 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 590 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 199 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 211 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 233 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 215 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 596 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 621 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 196 0 0 0 0 0 0 0 0
40 0 0 0 0 0 318 0 0 0 0 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 299 0 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 108 0 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 371 0 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 144 0 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 288 0 0 0 0 0 0 0 0 0 19 0 0 0
48 0 0 0 0 0 143 0 0 0 0 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 160 0 0 0 0 0 0 0 0 0 0 0 0 0
5 2 76 0 0 0 0 0 197 0 0 118 0 0 0 0 0 0 79 1
50 0 0 0 0 0 166 0 0 0 0 0 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 88 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 84 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 190 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 843 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 20 617 0 0 0 0 0
57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 456 0 0 0 0
59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 444 0 0 0
60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 363 0 0 0
61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188 0 0 0
63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 433 0 0
64 0 0 0 0 0 0 0 0 0 0 0 0 0 95 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 238 0 0 0 0
7 7 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,185 108
8 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 387
9 0 194 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22  

Figure 45.   The Coincidence Matrix of the C&RT Model 
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Figure 46.   The Coincidence Matrix of the CHAID Model 
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APPENDIX B. THE CLEMENTINE TRAINING AND TEST 
STREAMS 

 
Figure 47.   The Clementine Training Stream 

 

 
Figure 48.   The Clementine Test Stream 
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APPENDIX C. SAMPLES FROM RULESETS FROM C5.0 

 Ruleset 1: ON THE GROUND
Rules for 2 - contains 2 rule(s)

Rule 1 for 2
if Yawrate > -0.647 and Torque > 22.814 and Torque <= 24.190 and Nr <= 101.262 then 2

Rule 2 for 2
if Yawrate > -0.771 and Torque <= 24.620 then 2

Rules for 3 - contains 8 rule(s)
Rule 1 for 3

if Torque > 19.878 and Torque <= 22.329 and Nr > 100.028 and Nr <= 100.537 then 3
Rule 2 for 3

if Nr <= 99.458 then 3
Rule 3 for 3

if Yawrate <= -0.220 and Torque > 18.528 and Torque <= 19.484 and Nr > 100.654 then 3
Rule 4 for 3

if Yawrate <= -0.647 and Torque > 22.814 and Torque <= 24.190 and Nr <= 101.522 then 3
Rule 5 for 3

if Yawrate <= 0.642 and Torque > 17.947 and Nr <= 100.028 then 3
Rule 6 for 3

if Yawrate > -0.468 and Yawrate <= 0.642 and Torque > 19.484 and Torque <= 21.162 and Nr > 100.028 and Nr <= 100.700 then 3
Rule 7 for 3

if Torque > 17.947 and Torque <= 18.364 and Nr > 100.607 then 3
Rule 8 for 3

if Torque > 17.660 then 3
Rules for 4 - contains 9 rule(s)

Rule 1 for 4
if Yawrate > 0.642 then 4

Rule 2 for 4
if Yawrate > -0.564 and Torque > 18.184 and Torque <= 18.448 and Nr <= 100.607 then 4

Rule 3 for 4
if Yawrate > -0.564 and Yawrate <= -0.457 and Torque > 17.969 and Torque <= 18.122 and Nr <= 100.607 then 4

Rule 4 for 4
if Yawrate <= -0.564 and Torque > 17.969 and Torque <= 18.528 and Nr <= 100.376 then 4

Rule 5 for 4
if Yawrate > -0.371 and Torque > 17.969 and Torque <= 18.122 and Nr > 100.028 then 4

Rule 6 for 4
if Torque > 17.969 and Torque <= 18.122 and Nr > 100.028 and Nr <= 100.376 then 4

Rule 7 for 4
if Torque > 18.528 and Torque <= 19.484 and Nr > 100.607 and Nr <= 100.654 then 4

Rule 8 for 4
if Yawrate > -0.220 and Torque <= 19.484 and Nr > 100.537 then 4

Rule 9 for 4
if Yawrate > -3.140 and Torque > 21.162 and Torque <= 24.190 then 4

Rules for 5 - contains 16 rule(s)
Rule 1 for 5

if Torque > 24.190 and Nr > 101.592 then 5
Rule 2 for 5

if Yawrate > -0.771 and Torque > 24.620 then 5
Rule 3 for 5

if Yawrate <= -0.468 and Torque > 19.484 and Torque <= 21.162 and Nr > 100.537 then 5
Rule 4 for 5

if Yawrate <= 0.642 and Torque > 19.484 and Torque <= 21.162 and Nr > 100.700 then 5
Rule 5 for 5

if Torque > 17.632 and Torque <= 17.660 and Nr > 100.122 then 5
Rule 6 for 5

if Yawrate <= -0.620 and Torque <= 22.814 and Nr > 101.238 then 5
Rule 7 for 5

if Yawrate <= -2.347 and Torque > 24.190 then 5
Rule 8 for 5

if Yawrate <= -0.564 and Torque <= 18.528 and Nr > 100.376 then 5
Rule 9 for 5

if Torque > 18.448 and Torque <= 18.528 and Nr > 100.028 and Nr <= 100.607 then 5
Rule 10 for 5

if Yawrate <= -0.647 and Nr > 101.522 then 5
Rule 11 for 5

if Yawrate <= -0.444 and Torque > 17.632 and Torque <= 17.727 and Nr > 100.122 then 5
Rule 12 for 5

if Torque > 17.632 and Torque <= 17.727 and Nr > 100.420 then 5
Rule 13 for 5

if Torque > 17.574 and Torque <= 17.585 and Nr > 100.122 then 5
Rule 14 for 5

if Yawrate <= -0.400 and Torque > 17.823 and Torque <= 17.947 and Nr > 100.122 and Nr <= 100.329 then 5
Rule 15 for 5

if Torque > 17.947 and Torque <= 17.969 then 5
Rule 16 for 5

if Torque > 18.364 and Torque <= 18.528 and Nr > 100.607 then 5
Default: 2  

 

Figure 49.   A Sample Part of the Ruleset for the On the Ground Model 
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Ruleset 1:IN THE AIR SLOW WITH NO CR
Rules for 5 - contains 13 rule(s)

Rule 1 for 5
if Torque > 12.302 and Torque <= 39.023 then 5

Rule 2 for 5
if Lateral.Accel > 0.096 and Torque <= 43.444 and Nr > 100.443 and AltRate > -566.809 then 5

Rule 3 for 5
if Torque > 43.444 and Torque <= 47.408 and RollDer > -4.010 then 5

Rule 4 for 5
if Vertical.Accel > 1.020 and Torque > 62.433 and AltRate > 0 then 5

Rule 5 for 5
if Vertical.Accel > 1.090 and Torque > 56.565 and Nr > 100.283 and RollDer > -0.270 then 5

Rule 6 for 5
if Torque <= 54.951 and AltRate > 444.192 and AltRate <= 476.131 then 5

Rule 7 for 5
if Lateral.Accel > 0.101 and Torque > 47.408 and Torque <= 51.919 and Nr <= 100.399 and AltRate <= 589.939 and RollDer > -4.456 then 5

Rule 8 for 5
if Lateral.Accel > 0.098 and Vertical.Accel > 1.057 and Torque > 56.565 and Nr > 100.376 and RollDer > -4.010 then 5

Rule 9 for 5
if Torque > 53.412 and Torque <= 53.543 and Nr > 100.467 and AltRate > -493.936 then 5

Rule 10 for 5
if Torque > 57.541 and Torque <= 58.031 and Nr > 100.122 and Nr <= 100.189 and AltRate <= 0 and RollDer > -0.142 then 5

Rule 11 for 5
if Lateral.Accel <= 0.098 and Vertical.Accel > 0.964 and Vertical.Accel <= 0.997 and Torque > 58.842 and Torque <= 59.589 and Nr > 100.607 then 5

Rule 12 for 5
if Lateral.Accel > 0.098 and Torque > 59.435 and Torque <= 59.974 and Nr > 100.654 and Nr <= 100.911 and RollDer > -4.010 then 5

Rule 13 for 5
if Lateral.Accel > 0.088 and Vertical.Accel > 1.025 and Torque <= 53.116 and AltRate > -493.936 and AltRate <= 444.192 then 5

Rules for 7 - contains 24 rule(s)
Rule 1 for 7

if Torque <= 56.565 and AltRate > -589.300 and AltRate <= -493.936 then 7
Rule 2 for 7

if Torque > 51.919 and Torque <= 53.819 and Nr > 100.307 and Nr <= 100.467 and RollDer > -4.010 then 7
Rule 3 for 7

if Lateral.Accel <= 0.117 and Torque > 54.951 and Torque <= 56.565 and Nr > 99.892 and Nr <= 100.028 then 7
Rule 4 for 7

if Torque > 55.697 and Torque <= 56.380 and Nr > 100.259 and Nr <= 100.353 and AltRate > -593.574 and RollDer > -5.055 then 7
Rule 5 for 7

if Lateral.Accel <= 0.080 and Torque > 54.014 and Torque <= 54.925 and AltRate <= 412.704 then 7
Rule 6 for 7

if Torque > 54.951 and Torque <= 56.565 and Nr > 100.352 and AltRate > 434.448 then 7
Rule 7 for 7

if Torque > 54.951 and Torque <= 55.316 and RollDer > -4.559 and RollDer <= -0.028 then 7
Rule 8 for 7

if Vertical.Accel <= 1.034 and Torque > 51.919 and Torque <= 55.697 and Nr > 100.398 and Nr <= 100.422 and AltRate > -404.419 and RollDer > -5.055 then 7
Rule 9 for 7

if Torque > 51.919 and Torque <= 56.565 and RollDer > 0.033 then 7
Rule 10 for 7

if Torque > 54.951 and Torque <= 55.697 and Nr > 100.724 then 7
Rule 11 for 7

if Vertical.Accel > 0.970 and Vertical.Accel <= 0.974 and Torque > 55.697 and Torque <= 56.565 and Nr <= 100.770 and AltRate <= 0 and RollDer > -5.055 then 7
Rule 12 for 7

if Torque > 56.031 and Torque <= 56.565 and Nr > 100.537 and AltRate > -493.936 and RollDer <= -0.270 then 7
Rule 13 for 7

if Torque > 52.995 and Torque <= 53.166 and Nr <= 100.306 then 7
Rule 14 for 7

if Vertical.Accel > 0.974 and Vertical.Accel <= 0.983 and Torque > 53.819 and Torque <= 54.951 and Nr > 100.306 and Nr <= 100.376 and RollDer > -4.632 then 7
Rule 15 for 7

if Lateral.Accel <= 0.080 and Vertical.Accel > 1.012 and Torque > 54.951 and Torque <= 55.697 then 7
Rule 16 for 7

if Vertical.Accel <= 0.974 and Torque > 55.381 and Torque <= 55.667 and Nr > 100.491 and RollDer > -0.028 then 7
Rule 17 for 7

if Torque > 54.951 and Torque <= 55.116 and Nr > 100.422 and RollDer > -5.055 then 7
Rule 18 for 7

if Torque > 55.459 and Torque <= 55.549 and Nr > 100.422 and RollDer > -0.028 then 7
Rule 19 for 7

if Lateral.Accel > 0.083 and Torque > 55.372 and Torque <= 56.565 and Nr > 100.075 and Nr <= 100.237 and AltRate <= 589.939 and RollDer > -0.352 then 7
Rule 20 for 7

if Lateral.Accel > 0.080 and Lateral.Accel <= 0.147 and Vertical.Accel > 0.974 and Torque > 54.951 and Torque <= 55.697 and Nr > 100.491 and Nr <= 100.537 then 7
Rule 21 for 7

if Lateral.Accel > 0.126 and Vertical.Accel > 0.997 and Torque > 57.019 and Torque <= 58.031 and Nr <= 100.189 and RollDer > -0.142 then 7  
Figure 50.   A Sample Part of the Ruleset for the In the Air and Slow With No 

Control Reversals Model 
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Ruleset 1:IN THE AIR AND FAST WITH CR
Rules for 26 - contains 1 rule(s)

Rule 1 for 26
if CONTROL.REVERSAL.ID = 2 and AltRate > -1765.250 then 26

Rules for 27 - contains 1 rule(s)
Rule 1 for 27

if CONTROL.REVERSAL.ID = 4 and AltRate > -1765.250 then 27
Rules for 28 - contains 1 rule(s)

Rule 1 for 28
if CONTROL.REVERSAL.ID = 8 then 28

Rules for 45 - contains 1 rule(s)
Rule 1 for 45

if AltRate <= -1765.250 and VhFDer <= 0.496 then 45
Rules for 48 - contains 1 rule(s)

Rule 1 for 48
if CONTROL.REVERSAL.ID = 2 and PitchDerive > -6.641 and AltRate <= -1765.250 then 48

Rules for 50 - contains 1 rule(s)
Rule 1 for 50

if CONTROL.REVERSAL.ID = 4 and PitchDerive > -6.641 and AltRate <= -1765.250 and VhFDer > 0.496 then 50
Rules for 52 - contains 1 rule(s)

Rule 1 for 52
if CONTROL.REVERSAL.ID = 2 and PitchDerive <= -6.641 then 52

Rules for 54 - contains 1 rule(s)
Rule 1 for 54

if CONTROL.REVERSAL.ID = 4 and PitchDerive <= -6.641 then 54
Default: 45

 
Figure 51.   A Sample Part of the Ruleset for the In the Air and Fast with Control 

Reversals Model 
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Ruleset 1: IN THE AIR AND FAST WITH NO CR

Rules for 5 - contains 1 rule(s)
Rule 1 for 5

if AOBderived <= 8.559 and PitchDerive <= -3.905 and Torque > 60.618 and VhFDer <= 0.805 then 5
Rules for 9 - contains 2 rule(s)

Rule 1 for 9
if RollDer > -7.431 and Torque > 53.734 and Torque <= 60.618 and VhFDer <= 0.485 then 9

Rule 2 for 9
if PitchDerive > -3.905 and RollDer > -7.431 and Torque > 60.618 and VhFDer <= 0.394 then 9

Rules for 19 - contains 5 rule(s)
Rule 1 for 19

if AltRate > -613.367 and RollDer > -7.431 and Torque <= 32.670 and VhFDer <= 0.383 then 19
Rule 2 for 19

if AltRate > -613.367 and RollDer > -7.431 and RollDer <= 10.585 and Torque <= 39.084 and VhFDer <= 0.365 then 19
Rule 3 for 19

if RollDer > -7.431 and Torque <= 33.675 and VhFDer > 0.379 and VhFDer <= 0.383 then 19
Rule 4 for 19

if RollDer > -7.431 and Torque <= 33.347 and Vertical.Accel > 0.964 and VhFDer > 0.370 and VhFDer <= 0.383 then 19
Rule 5 for 19

if RollDer <= 10.585 and Torque > 33.109 and Torque <= 39.084 and VhFDer <= 0.370 then 19
Rules for 20 - contains 6 rule(s)

Rule 1 for 20
if RollDer <= 10.585 and Torque > 36.772 and Torque <= 39.084 and VhFDer <= 0.516 then 20

Rule 2 for 20
if RollDer > -7.431 and RollDer <= 10.585 and VhFDer > 0.383 and VhFDer <= 0.416 then 20

Rule 3 for 20
if Torque > 32.670 and Torque <= 33.109 and VhFDer > 0.365 and VhFDer <= 0.370 then 20

Rule 4 for 20
if RollDer > -7.431 and RollDer <= 10.585 and Torque > 33.675 and Torque <= 39.084 and VhFDer <= 0.383 then 20

Rule 5 for 20
if RollDer > -7.431 and RollDer <= 10.585 and Torque > 33.347 and VhFDer > 0.370 and VhFDer <= 0.379 then 20

Rule 6 for 20
if Torque > 32.670 and Vertical.Accel <= 0.964 and VhFDer > 0.365 and VhFDer <= 0.379 then 20

Rules for 21 - contains 1 rule(s)
Rule 1 for 21

if AOBderived <= 8.559 and Torque > 39.084 and Torque <= 43.731 and VhFDer <= 0.594 then 21
Rules for 22 - contains 1 rule(s)

Rule 1 for 22
if AOBderived <= 7.367 and AltRate > -657.675 and PitchDerive > -3.016 and 

RollDer <= 5.093 and Torque > 30.241 and Torque <= 39.084 and VhFDer > 0.516 and VhFDer <= 0.632 then 22
Rules for 23 - contains 2 rule(s)

Rule 1 for 23
if AOBderived <= 8.559 and Torque > 39.084 and Torque <= 43.731 and VhFDer > 0.594 and VhFDer <= 0.805 then 23

Rule 2 for 23
if AOBderived <= 13.860 and RollDer > 0 and Torque > 12.626 and Torque <= 39.084 and VhFDer > 0.632 then 23

Rules for 24 - contains 3 rule(s)
Rule 1 for 24

if AOBderived <= 8.559 and Torque > 43.731 and Torque <= 60.618 and VhFDer > 0.485 and VhFDer <= 0.790 then 24
Rule 2 for 24

if PitchDerive <= -4.032 and Torque <= 56.954 and VhFDer > 0.790 and VhFDer <= 0.805 then 24
Rule 3 for 24

if AltRate > -500.654 and PitchDerive > -4.032 and PitchDerive <= -3.208 and RollDer > -7.431 and VhFDer > 0.794 and VhFDer <= 0.798 then 24
Rules for 25 - contains 1 rule(s)

Rule 1 for 25
if AOBderived <= 8.559 and Torque > 52.900 and VhFDer > 0.805 and VhFDer <= 0.972 then 25

Rules for 26 - contains 3 rule(s)
Rule 1 for 26

if AOBderived <= 8.559 and Torque > 60.618 and VhFDer > 0.394 and VhFDer <= 0.805 then 26
Rule 2 for 26

if AOBderived <= 8.559 and Torque > 48.519 and Torque <= 53.734 and VhFDer <= 0.485 then 26
Rule 3 for 26

if AltRate <= -613.367 and PitchDerive > 0 and RollDer > -7.431 and Torque <= 39.084 then 26
Rules for 27 - contains 5 rule(s)

Rule 1 for 27
if AOBderived <= 5.092 and AltRate > -613.367 and Torque <= 36.772 and VhFDer > 0.445 and VhFDer <= 0.516 then 27

Rule 2 for 27
if PitchDerive > -3.208 and Torque <= 60.618 and VhFDer > 0.790 and VhFDer <= 0.805 then 27

Rule 3 for 27
if AOBderived <= 8.559 and PitchDerive > -4.032 and VhFDer > 0.802 and VhFDer <= 0.805 then 27

Rule 4 for 27
if AOBderived <= 8.559 and PitchDerive > -4.032 and RollDer > 1.159 and VhFDer > 0.790 then 27  

Figure 52.   A Sample Part of the Ruleset for the In the Air and Fast No Control 
Reversals Model 
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APPENDIX D. PLOTS OF THE CLASSIFICATION TREES BUILT 
USING RPART. 
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Figure 53.   On the Ground Tree 
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Figure 54.   In the Air and Moving Slow Tree 
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APPENDIX E. THE SCRIPT FOR BUILDING TREE MODELS IN S-PLUS 

#(This portion is only for building In the Air and slow model; the other tree codes are very similar. The differences are given at the end of this Appendix) 

 
#####TREE BUILDING SCRIPT FOR CLASSIFICATION OF "IN THE AIR AND SLOW SPEED" REGIMES########### 
 
######################################################################################################### 
# Traing and testing set                                                                                       .# 
######################################################################################################### 
TRAIN1011 <- convert.col.type(target = TRAIN1011, column.spec = list("CONTROL.REVERSAL.ID", "Takeoff.Flag", "Weight.on.Wheels", "Regime"), column.type = "factor") 
menuSubset(data =TRAIN1011, subset.expression = "Weight.on.Wheels == 0", subset.columns = "<ALL>", result.type = "Data Set", subset.col.name = "Subset", save.name = 
"IN.THE.AIR", show.p = SHOW.ON.SCREEN); 
TEST1011 <- convert.col.type(target = TEST1011, column.spec = list("CONTROL.REVERSAL.ID", "Takeoff.Flag", "Weight.on.Wheels", "Regime"), column.type = "factor") 
menuSubset(data =TEST1011, subset.expression = "Weight.on.Wheels == 0", subset.columns = "<ALL>", result.type = "Data Set", subset.col.name = "Subset", save.name = 
"IN.THE.AIRT", show.p = SHOW.ON.SCREEN); 
 
######################################################################################################### 
# Transforming and rounding the parameters.Good for shortnames and unwanted digits                             .# 
######################################################################################################### 
TEMPTRAIN_IN.THE.AIR 
TEMPTEST_IN.THE.AIRT 
 
TEMPTRAIN <- menuTransform(data = TEMPTRAIN, variable.name = "VhFr", expression = "round(Airspeed.Vh.Fraction,1)") 
TEMPTRAIN <- menuTransform(data = TEMPTRAIN, variable.name = "Tq", expression = "(Torque.1+Torque.2)/2") 
TEMPTRAIN <- menuTransform(data = TEMPTRAIN, variable.name = "Roll", expression = "ifelse(Roll.Attitude>=-4&Roll.Attitude <=-2,0,round(Roll.Attitude,0))") 
TEMPTRAIN <- menuTransform(data = TEMPTRAIN, variable.name = "AltR", expression = "ifelse(Altitude.Rate>=-300&Altitude.Rate <=300,0,round(Altitude.Rate,0))") 
TEMPTRAIN <- menuTransform(data = TEMPTRAIN, variable.name = "Pitch", expression = "ifelse(Pitch.Attitude>=2&Pitch.Attitude <=5,0,round(Pitch.Attitude,0))") 
TEMPTRAIN <- menuTransform(data = TEMPTRAIN, variable.name = "Yaw", expression = "ifelse(Yawrate>=-2&Yawrate<=2,0,round(Yawrate))") 
TEMPTRAIN <- menuTransform(data = TEMPTRAIN, variable.name = "Vert", expression = "round(Vertical.Accel,1)") 
TEMPTRAIN <- menuTransform(data = TEMPTRAIN, variable.name = "Lat", expression = "round(Lateral.Accel,1)")# 
TEMPTRAIN <- menuTransform(data = TEMPTRAIN, variable.name = "RA", expression =  "ifelse(Radar.Altitude>100,NA,round(Radar.Altitude,0))") 
TEMPTRAIN <- menuTransform(data = TEMPTRAIN, variable.name = "NR", expression = "round(Nr,1)") 
 
TEMPTEST <- menuTransform(data = TEMPTEST, variable.name = "VhFr", expression = "round(Airspeed.Vh.Fraction,1)") 
TEMPTEST <- menuTransform(data = TEMPTEST, variable.name = "Tq", expression = "(Torque.1+Torque.2)/2") 
TEMPTEST <- menuTransform(data = TEMPTEST, variable.name = "Roll", expression = "ifelse(Roll.Attitude>=-4&Roll.Attitude <=-2,0,round(Roll.Attitude,0))") 
TEMPTEST <- menuTransform(data = TEMPTEST, variable.name = "AltR", expression = "ifelse(Altitude.Rate>=-300&Altitude.Rate <=300,0,round(Altitude.Rate,0))") 
TEMPTEST <- menuTransform(data = TEMPTEST, variable.name = "Pitch", expression = "ifelse(Pitch.Attitude>=2&Pitch.Attitude <=5,0,round(Pitch.Attitude,0))") 
TEMPTEST <- menuTransform(data = TEMPTEST, variable.name = "Yaw", expression = "ifelse(Yawrate>=-2&Yawrate<=2,0,round(Yawrate))") 
TEMPTEST <- menuTransform(data = TEMPTEST, variable.name = "Vert", expression = "round(Vertical.Accel,1)") 
TEMPTEST <- menuTransform(data = TEMPTEST, variable.name = "Lat", expression = "round(Lateral.Accel,1)")# 
TEMPTEST <- menuTransform(data = TEMPTEST, variable.name = "RA", expression =  "ifelse(Radar.Altitude>100,NA,round(Radar.Altitude,0))") 
TEMPTEST <- menuTransform(data = TEMPTEST, variable.name = "NR", expression = "round(Nr,1)") 
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######################################################################################################### 
# Subsetting for fast and slow regimes                                                                          # 
######################################################################################################### 
 
menuSubset(data =TEMPTRAIN, subset.expression = "KCAS < 44.72 ", subset.columns = "<ALL>", result.type = "Data Set", subset.col.name = "Subset", save.name = 
"IN.THE.AIR.SLOW", show.p = SHOW.ON.SCREEN);  
menuSubset(data =TEMPTEST, subset.expression = "KCAS < 44.72 ", subset.columns = "<ALL>", result.type = "Data Set", subset.col.name = "Subset", save.name = 
"IN.THE.AIR.SLOW.TEST", show.p = SHOW.ON.SCREEN);  
 
guiExportData(FileName = "C:\\IN.THE.AIR.SLOW.csv", FileTypeDesc = "ASCII file - comma delimited (csv)", SourceDataFrame = "IN.THE.AIR.SLOW", ColNames = T, RowNames = 
F, Quotes = T, ASCIIDelimiter = ",", KeepOrDropList = "<ALL>", KeepOrDrop = "Keep selected", Rows = "<ALL>", ASCIIDateOutFormat = "M/d/yyyy", ASCIITimeOutFormat = 
"h:mm:ss tt", ASCIIDecimalPoint = "Period (.)", ASCIIThousandsSeparator = "None") 
guiImportData(FileName = "C:\\IN.THE.AIR.SLOW.csv", FileTypes = "ASCII file - comma delimited (csv)", TargetDataFrame = "IN.THE.AIR.SLOW.2", ImportAsBigData = F, 
TargetStartCol = "<END>", TargetInsertOverwrite = "Create new data set", NameRowAuto = "Auto", NameColAuto = "Auto", StartCol = 1, EndCol = "<END>", StartRow = 1, EndRow = 
"<END>", PageNumberAuto = "Auto", StringsAsFactors = T, SortFactorLevels = T, LabelsAsNumbers = F, CenturyCutoffYear = 1930, ASCIIDelimiters = "Comma (,)", KeepOrDropList 
= "&|", SeparateDelimiters = T, ASCIIDateInFormat = "M/d/yyyy", ASCIITimeInFormat = "h:mm:ss tt", ASCIIDecimalPoint = "Period (.)", ASCIIThousandsSeparator = "None", 
MissingValueString = "NA", LookMaxLinesString = "256", MaxLineWidth = 32768, SubsetNone = T, SubsetRandomSample = F, SubsetRandomSampleValue = 10, 
SubsetSampleNthRow = F, SubsetSampleNthRowValue = 10, SubsetKeepExpression = F) 
guiExportData(FileName = "C:\\IN.THE.AIR.SLOW.TEST.csv", FileTypeDesc = "ASCII file - comma delimited (csv)", SourceDataFrame = "IN.THE.AIR.SLOW.TEST", ColNames = T, 
RowNames = F, Quotes = T, ASCIIDelimiter = ",", KeepOrDropList = "<ALL>", KeepOrDrop = "Keep selected", Rows = "<ALL>", ASCIIDateOutFormat = "M/d/yyyy", 
ASCIITimeOutFormat = "h:mm:ss tt", ASCIIDecimalPoint = "Period (.)", ASCIIThousandsSeparator = "None") 
guiImportData(FileName = "C:\\IN.THE.AIR.SLOW.TEST.csv", FileTypes = "ASCII file - comma delimited (csv)", TargetDataFrame = "IN.THE.AIR.SLOW.TEST.2", ImportAsBigData = 
F, TargetStartCol = "<END>", TargetInsertOverwrite = "Create new data set", NameRowAuto = "Auto", NameColAuto = "Auto", StartCol = 1, EndCol = "<END>", StartRow = 1, 
EndRow = "<END>", PageNumberAuto = "Auto", StringsAsFactors = T, SortFactorLevels = T, LabelsAsNumbers = F, CenturyCutoffYear = 1930, ASCIIDelimiters = "Comma (,)", 
KeepOrDropList = "&|", SeparateDelimiters = T, ASCIIDateInFormat = "M/d/yyyy", ASCIITimeInFormat = "h:mm:ss tt", ASCIIDecimalPoint = "Period (.)", ASCIIThousandsSeparator = 
"None", MissingValueString = "NA", LookMaxLinesString = "256", MaxLineWidth = 32768, SubsetNone = T, SubsetRandomSample = F, SubsetRandomSampleValue = 10, 
SubsetSampleNthRow = F, SubsetSampleNthRowValue = 10, SubsetKeepExpression = F) 
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######################################################################################################### 
# Load library rpart         
######################################################################################################### 
out <- try (library (rpart, lib.loc="r:/common/whitaker") )  # (Buttrey,2005)                            
 if (class (out) == "Error")  library (rpart, lib.loc="C:/Documents and Settings/Murat/My Documents/dersler/this/datamining_R_whitaker")   
########################### 
# IN THE AIR SLOW TREE    # 
########################### 
IN.THE.AIR.TREE.SLOW <- rpart(formula = Regime ~VhFr +AltR+ CONTROL.REVERSAL.ID+ Landing.Flag+ Lat+Pitch +Roll+Tq +Yaw+NR+RA, data = IN.THE.AIR.SLOW.2, 
cp =0.001)  
## Prune with 1-SE Rule; find the cp where xerror < (best xerror + best xerror’s corresponding xstd) #(Ripley,B.,2004 June 7) 
prune.1se <- function(intree) { 
# Autoprune with 1 SE rule (Breiman 1984) 
# Written by V. Bahn 
cp.table <- intree$cptable 
min.error <- min(cp.table[,4]) 
one.se <- cp.table[cp.table[,4] == min.error, 5] 
cp.range <- cp.table[cp.table[,4] < min.error + one.se, 1] 
cp.1se <- max(cp.range) 
temp.tree <- prune(intree, cp = cp.1se) 
temp.tree 
} 
IN.THE.AIR.TREE.SLOW_prune.1se(IN.THE.AIR.TREE.SLOW) 
graphsheet();plotcp(IN.THE.AIR.TREE.SLOW) 
title("IN THE AIR AND SLOW ") 
graphsheet();plot(IN.THE.AIR.TREE.SLOW,branch=.4,compress=T) 
title(" IN THE AIR AND SLOW ") 
text(IN.THE.AIR.TREE.SLOW) 
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# Takes out the predicted vector and turn it into a table and data.frame. 
predAS_data.frame(table(IN.THE.AIR.SLOW.TEST.2$Regime,predict(IN.THE.AIR.TREE.SLOW,IN.THE.AIR.SLOW.TEST.2,type="vector"))) 
predtestAS_data.frame(table(IN.THE.AIR.SLOW.TEST.2$Regime,IN.THE.AIR.SLOW.TEST.2$Regime)) 
 
#########################################################################################################  
#Penalty or loss matrix is constructed using the predicted values.Wherever there is misclassification,depending               # 
#on the distance between regimes (This is also the answer of are they in the same family? or How bad is the misclassification?#                                                  # 
######################################################################################################### 
temp_predAS 
temp_as.matrix(temp) 
# Decides the penalty close neighbors small penalty distant neighbors big penalty 
 
decidePenalty_function(i,j){ 
   delta_abs(i-j)  
  if(delta <= 2 ) x_1.1 else if(delta == 3) x_1.5 else if(delta == 4) x_2 else x_3 
  x 
} 
 
#Transforms the diagonals to zero and assigns a bigger penalty if the number is bigger than a threshold value using on the distance between the actual and the predicted regime  
formTheMatrix_function(x){ 
 
 for(i in 1:15){ 
    for(j in 1:15){ 
       if (i==j) x[i,j]_0 else   if( x[i,j]>7 ) x[i,j]_decidePenalty(i,j) else x[i,j]_1 
    }     
 } 
x  
} 
 
ASloss_formTheMatrix(temp) 
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#################################################################################################################### 
# Here using the cost matrix,a new tree is constructed. Finding out the bad misclassifications,it is hoped that we wont see those bad ones again.  # 
# Only acceptable misclassifications are good;and it means that misclass. is close to the actual regime.                                                                    # 
#################################################################################################################### 
IN.THE.AIR.TREE.SLOW <- rpart(formula = Regime ~VhFr +AltR+CONTROL.REVERSAL.ID+Landing.Flag+Lat+Pitch+Roll+Tq+Yaw+Nr+RA,parms=list(loss=ASloss) , data = 
IN.THE.AIR.SLOW.2,  cp =0.001) 
#1-SE rule 
IN.THE.AIR.TREE.SLOW_prune.1se(IN.THE.AIR.TREE.SLOW) 
graphsheet();plotcp(IN.THE.AIR.TREE.SLOW) 
title("IN THE AIR SLOW with penalties ") 
graphsheet();plot(IN.THE.AIR.TREE.SLOW,branch=.4,compress=T) 
title("   IF(Weight on Wheels = 0 AND SLOW with penalties ") 
text(IN.THE.AIR.TREE.SLOW) 
 
#predicted values 
predASL_data.frame(table(IN.THE.AIR.SLOW.TEST.2$Regime,predict(IN.THE.AIR.TREE.SLOW,IN.THE.AIR.SLOW.TEST.2,type="vector"))) 
 
#test values (what should have been observed for fitted values?) 
predtestAS_data.frame(table(IN.THE.AIR.SLOW.TEST.2$Regime,IN.THE.AIR.SLOW.TEST.2$Regime)) 
 
#plot a simple tree 
AS2_snip.rpart(IN.THE.AIR.TREE.SLOW,toss=50:2000);graphsheet();plot(AS2,branch=0);text(AS2);title("SIMPLIFIED ~IN THE AIR AND MOVING SLOW~ TREE") 
 
 
#Correct classification rate 
sum(diag( predASL))/sum(diag( predtestAS)) 
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The Differences in the Penalty function for Different Models (Replace the bold lines with the ones given below.) 
 
IN.THE.AIR.TREE.FAST <- rpart(formula = Regime ~VhFr + AltR+ CONTROL.REVERSAL.ID+ Landing.Flag+Lat+Pitch+Roll+Tq+ Yaw+NR+RA, data = IN.THE.AIR.FAST.2, cp 
=0.001) 
 
decidePenalty_function(i,j){ 
   delta_abs(i-j) 
   if(delta <= 2 ) x_1.1 else if(delta == 3) x_1.5 else if(delta == 4) x_2 else x_3 
   x 
} 
 
 
The Differences in scripts for “ON THE GROUND” Tree.(Replace the bold lines with the ones given below) 
ON.THE.GROUND.TREE  <- rpart(formula = Regime ~Lat+Tq+Yaw+NR+RA, data = ON.THE.GROUND.2,  cp =0.001) 
 
decidePenalty_function(i,j){ 
   delta_abs(i-j)    
  if(delta = 1 ) x_1 else if(delta == 2) x_2 else if(delta == 3) x_3 
  x 
} 
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